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Abstract
Proper orthogonal decomposition has been utilized for well over a decade to study turbulence and cyclic variation of
flow and combustion properties in internal combustion engines. In addition, proper orthogonal decomposition is useful
to quantitatively compare multi-cycle in-cylinder measurements with numerical simulations (large-eddy simulations).
However, the application can be daunting, and physical interpretation of proper orthogonal decomposition can be ambig-
uous. In this paper, the mathematical procedure of proper orthogonal decomposition is described conceptually, and a
compact MATLAB� code is provided. However, the major purpose is to empirically illustrate the properties of the
proper orthogonal decomposition analysis and to propose practical procedures for application to internal combustion
engine flows. Two measured velocity data sets from a motored internal combustion engine are employed, one a highly
directed flow (each cycle resembles the ensemble average), and the other an undirected flow (no cycle resembles the
average). These data are used to illustrate the degree to which proper orthogonal decomposition can quantitatively dis-
tinguish between internal combustion engine flows with these two extreme flow properties. In each flow, proper ortho-
gonal decomposition mode 1 is an excellent estimate of ensemble average, and this study illustrates how it is thus
possible to unambiguously quantify the cyclic variability of Reynolds-averaged Navier–Stokes ensemble average and tur-
bulence. In addition, this study demonstrates the benefits of comparing two different samples of cycles using a common
proper orthogonal decomposition mode set derived by combining the two samples, the effect of spatial resolution, and
a method to evaluate the number of snapshots required to achieve convergence.
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Introduction

In-cylinder turbulence in reciprocating internal com-
bustion (IC) engines remains a subject of great interest1

and some controversy, since there is still no single con-
sensus as to how to distinguish between the flow prop-
erties associated with turbulence kinetic energy
dissipation from the properties associated with cyclic
variability. Whereas turbulence is important for fuel–
air mixing and burning rate enhancement to achieve
high engine speeds, cycle-to-cycle variations have long
been recognized as an important source of limited
power output, increased fuel consumption, and high
pollutant emission levels for IC engines. Thus, it is
important to define metrics to quantify and separate
turbulence from cyclic variability. This applies equally
to both experimental and numerical studies. Further, it
is important to quantitatively compare cycles sampled

from different experiments or between experiments and
simulations. Proper orthogonal decomposition (POD)
is now being used in an attempt to fulfill these needs.

In recent years, POD has been considered as a pow-
erful tool to objectively identify the coherent structures
in turbulent flows. Lumley2 introduced POD into tur-
bulent flow research as a tool to separate ‘large eddies’
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in shear flows. Graftieaux et al.3 suggested using POD
to separate pseudo-fluctuations attributed to the
unsteady nature of the large-scale vortices from fluc-
tuations due to small-scale turbulence. POD has been
applied to in-cylinder velocity data of reciprocating
engines by a number of groups.4–7. Bizon et al.8

reported that the use of POD has allowed the analysis
of cyclic variations of two-dimensional (2D) scalar
combustion images. Stöhr et al.9 demonstrated com-
bined application of POD on results from particle
image velocimetry (PIV), and planar laser-induced
fluorescence of OH (OH-PLIF) measurements can pro-
vide detailed insights into flow–flame interaction in tur-
bulent flames. Recently, Voisine et al.10 employed
phase-invariant POD to analyze motored flow ‘break-
down’ and cyclic variability during intake and early
compression in a four-valve pent-roof engine. Seeking
insight into the causes of misfires, POD was applied to
velocity and equivalence ratio images, and was useful
in identifying and analyzing the differences in flow and
mixture conditions at spark timing between well-
burning and misfiring cycles.11

Computations and high-speed laser imaging diag-
nostics provide the ability to resolve the rapid evolution
of in-cylinder flows, and POD holds promise as one
method for comparing stochastic samples from both
sources of data. Reynolds-averaged Navier–Stokes
(RANS) computations provide ensemble-averaged flow
motion in IC engines, useful for engineering computa-
tions. In contrast, large-eddy simulation (LES) provides
multiple cycles of stochastic, in-cylinder flow processes
formerly unavailable, thereby capturing cycle-to-cycle
variations.12 However, for any numerical tool for tur-
bulent flows, model validation is always important.
High-speed laser imaging provides the ability to resolve
the rapid evolution of in-cylinder flow, fuel–air mixing,
and combustion within individual cycles and for hun-
dreds of consecutive cycles.13,14 These experimental
data can be used to validate the LES model, since the
engine cycles are stochastic, cycle samples from either
simulations or experiments require statistical rather
than deterministic means for comparison.15 POD is
proposed as a metric to make quantitative, objective
comparisons of cycles sampled from large-eddy simula-
tions and/or experiments.16–18

According to Cordier and Bergmann,19 the mathe-
matics of POD has been around since 1943, and POD
has been applied to fluid mechanics since 1967.2 The
principles have been described and discussed in detail
by Cordier and Bergmann,19 Chaterjee,20 and Holmes
et al.21 Nonetheless, many practical questions arise as
to the actual procedures of applying POD and how to
use and interpret the results; these questions motivate
the empirical interpretations performed here. Some of
those questions were addressed in an analysis of both
synthetic and measured flow fields to empirically reveal
the properties of POD.22 The synthetic velocity distri-
butions were created to illustrate fundamental proper-
ties of the POD analysis while avoiding the complexities

of real IC engine flows. The measured data sets were
chosen as examples representing two extremes of
motored in-cylinder flow. One data set was the result of
a highly directed intake flow, where every cycle appears
similar to the ensemble average at top dead center
(TDC); the other was a highly undirected intake flow,
where no cycle appeared similar to the TDC ensemble
average. These data were used to illustrate how to inter-
pret POD analysis with and without first subtracting
the ensemble average, the POD mode energy spectra
(energy fraction and absolute energy), and the relation-
ship between mode patterns using the relevance index,
as introduced by Liu and Haworth.17

This paper builds on previous work and presents gui-
dance for executing POD analysis and practical applica-
tion. A MATLAB� code for performing the POD is
included in appendix 2. The principles and techniques
defined in a previous study22 are applied here. The same
two examples of two-component, 2D velocity distribu-
tions measured in a motored IC engine are used to illus-
trate (a) an unambiguous quantification of the cyclic
variability of RANS ensemble average and RANS tur-
bulence, (b) the benefits of comparing samples of differ-
ent cycles using a common POD mode set derived by
combining the two samples, (c) the effect of spatial reso-
lution, and (d) a means to evaluate the number of snap-
shots required to achieve convergence. The two motored
IC engine measured data sets employed in the previous
study are used here again to illustrate the degree and
metrics by which POD can quantitatively distinguish
between the two extreme in-cylinder engine flows.

Mathematical concept of POD

Conceptually, the POD technique decomposes the orig-
inal velocity or scalar field into a sum of weighted, lin-
ear, basis functions or modes, um. In this study, the
modes are computed from two-component, 2D velocity
distributions, but could be applied to three-component
three-dimensional velocity distributions as in Liu and
Haworth,17 or one-component scalar distributions,
which has been demonstrated by Sirovich and Kirby.23

The modes are referred to as an empirical basis as they
are generated from a sample of snapshots (here mea-
sured or computed velocity distributions, V) rather
than prescribed a priori. The number of modes is equal
to the number of snapshots. In addition, the modes are
orthogonal to each other and normalized such that the
magnitude of each mode is unity. The actual energy of
each mode is contained in a matrix of coefficients, c,
where there is one coefficient for each mode of each
snapshot. The coefficients are generated by projection
of each mode on to each snapshot. Thus, one can
reconstruct each snapshot by summing all modes multi-
plied by the coefficients for that snapshot. Alternately,
one can compute all of the energy contained in one
mode for the entire sample by summing the square of
all coefficients for that mode. Here, only the
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mathematical descriptions necessary to define the
nomenclature are described, since comprehensive
descriptions are available in the literature.19–21

Mathematical procedures of POD

The POD technique provides a linear approximation of
a set of functions that enable an easier characterization
of the complex original input data as a sum of weighted
basis functions. For practical applications, the decom-
position can be carried out using the classical method2

or the snapshot method.24 For experimental data such
as laser Doppler anemometry, which provides a well-
defined time description but with limited spatial resolu-
tion, the classical method should be employed. The
results of the snapshot method are equivalent to those
from the classical method, but the snapshot method is
more efficient in cases where the number of spatial loca-
tions (grid nodes) in the velocity field is greater than the
number of snapshots. The snapshot method was used
here and a sample code written in MATLAB� 2009b is
provided in appendix 2.

The fundamental idea of POD is to decompose a set
of velocity distributions, V(k) = (u, v)

(k)
i, j or scalar quan-

tities distributions s(k) = (s)(k)(i, j), (called snapshots, i, j is
the index of the grid points in the velocity or scalar
quantities distributions, k is the snapshot index) into a
linear combination of M spatial basis functions (POD
modes,um) and the corresponding coefficients c(k)m

V(k) =
XM
m=1

c(k)m um ð1Þ

with the constraint that the basis functions are ortho-
normal to each other.

The mathematic procedures of POD are shown as
follows. The u velocity of every single velocity distribu-
tion V(k) was reordered into a row and put into a
matrix

U=

U(1)

U(2)

..

.

U(K)

2
6664

3
7775=

u
(1)
i=1, j=1 u

(1)
i=1, j=2 � � � u

(1)
i=1, j= J u

(1)
i=2, j=1 � � � u

(1)
i= I, j= J

u
(2)
i=1, j=1 u

(2)
i=1, j=2 � � � u

(2)
i=1, j= J u

(2)
i=2, j=1 � � � u

(2)
i= I, j= J

� � � � � � � � � � � � � � � � � � � � �
u
(K)
i=1, j=1 u

(K)
i=1, j=2 � � � u

(K)
i=1, j= J u

(K)
i=2, j=1 � � � u

(K)
i= I, j= J

2
6664

3
7775
ð2Þ

where I3J is the number of total grid points in the velo-
city field and K is the total number of snapshots. The v
velocity component was processed the same way as the
u velocity to form the matrix V. Then, the spatial corre-
lation matrix for velocity distributions was defined as

C=
1

K
(UUT +VVT) ð3Þ

For scalar quantities distributions, C= 1
K SS

T

(where S was obtained the same way as equation (2)).
The associated code for this procedure is shown in
appendix 2, sections 1 and 2. The code is given for velo-
city distributions; the correlation matrix C must be
replaced by C= 1

K SS
T if the POD analysis is to be car-

ried out for scalar quantity distributions.
The goal of using the POD technique is to find a

sequence of orthonormal basis functions um (POD
modes) representing the ‘coherent structures’ in such a
way that the following function is minimized

XK
k=1

����
����V(k) �

XM
m=1

c(k)m um

����
����
2

! min ð4Þ

subject to (ui,uj) = dij =
1 if i= j
0 if i 6¼ j

�

where �k k denotes the L2 norm.
This minimization is realized by solving the eigenva-

lue problem of correlation matrix C

Cbm = lmbm ð5Þ

Here, this step is performed with the MATLAB� code
in appendix 2, section 3.

The basis functions are obtained by projecting U
and V onto the eigenvector bm (m=1, 2,.,M), with
subsequent normalization (section 4 in appendix 2).
The basis functions represent the extracted flow pat-
tern, which are often considered to be synonymous with
‘coherent structures’ in the literature. It is important to
recognize that these structures do not necessarily reflect
a real flow structure that can be observed in a flow
field. Rather, each mode represents a component of a
flow field that, by definition (equation (1)), is recon-
structed by summing over all weighted modes. A real
flow pattern only appears prominent in a POD mode
when the flow structure is nearly the same and in the
same location in each flow field (snapshot).22

The coefficients of each mode were computed by
projecting the original velocity fields onto the computed
basis functions (section 5 in appendix 2) that are then
exported, along with the respective coefficients for dis-
play and further processing (section 6 in appendix 2).
The K3M coefficient matrix c(k)m

c(k)m =

c
(1)
1 c

(1)
2 . . . c

(1)
M

c
(2)
1 c

(2)
2 . . . c

(2)
M

. . . . . . . . . . . .
c
(K)
1 c

(K)
2 . . . c

(K)
M

2
664

3
775 ð6Þ

contains the amplitude that the corresponding basis
function contributes to a particular snapshot, k, in each
row, and the amplitude corresponding to a particular
mode, m, in each column. Because of the use of the L2

norm for POD, it is natural to apply this to velocity
distributions since 1

2
c(k)m

� �2
represents the energy con-

tributed by the mth mode to the kth cycle. Based on
equation (1), the velocity distribution from a given
cycle k can be reconstructed by summing all of the
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modes multiplied by their corresponding coefficient for
that cycle. Likewise, the kinetic energy per unit mass
from all of the cycles captured by the mth mode is

KEm =
1

2

XK
k=1

(c(k)m )2 ð7Þ

where KEm = KE/r = ½V2. The energy fraction of the
mth mode is given by

kem =KEm=
XM
m=1

KEm ð8Þ

The modes are ordered with decreasing corresponding
energy so that mode 1 carries the highest energy, and
‘energy spectra’ showing the energy as a function of
ordered mode number are assembled. It is worth noting
here that many POD discussions quantify the energy
as c2. Here, we present equation (7) as a reminder that
kinetic energy, ½rV2 is required for energy balances
when comparing different data sets. This is particularly
important for phase-invariant analysis, remapping
between grids, and when there are spatial density varia-
tions, where the mass associated with each vector can
dominate differences in the kinetic energy.

Ensemble-averaged velocity distributions are related
to the POD through the averaged coefficients and the
POD modes using

Vh i= 1

K

XK
k=1

Vk =
XM
m=1

1

K

XK
k=1

c(k)m

" #
um =

XM
m=1

cmh iKum

ð9Þ

where the operator cmh iK indicates the ensemble average
over all coefficients for a given mode. The exact ensem-
ble average is achieved when all modes are used and a
low-order estimate is obtained with a truncated set.

Metric for comparing velocity or scalar
mode patterns

It is common in the literature to compare POD mode
spectra (energy fraction or cumulative energy versus
mode number) to assess the equivalency of spectra. A
fair comparison of coefficients and energy spectra
would assume the corresponding modes (patterns) are
the same. Comparison of modes is often carried out by
visual comparison, which is both qualitative and
impractical. Thus, a metric to quantify the similarity of
mode patterns is needed. Here, the ‘relevance index’17,
Rp, which is obtained by projecting one velocity or sca-
lar distribution D(1) on to another D(2) is employed

Rp =
D(1),D(2)
� �
D(1) �k kD(2)k k ð10Þ

The numerator denotes the inner product of two distri-
butions, and �k k denotes the L2 norm (for POD modes,
equal to 1). The value of the ‘relevance index’ varies

from 21 to 1. Rp =1 if the two velocity distributions
are identical, Rp=21 means two velocity distributions
are exactly opposite, Rp=0 if two POD modes are
orthogonal. It can be used to compare two POD basis
functions, or to compare a basis function with a snap-
shot, or to compare two snapshots. Since Rp is normal-
ized by the L2 (energy for flow velocity), it is only a
measure of the degree of similarity between two distri-
bution patterns. This is demonstrated in Figure 1,
which shows three vortices that are identical in struc-
ture, except for the velocity magnitudes. The vortices in
Figure 1(b) and 1(c) are obtained by multiplying every
vector in vortex of Figure 1(a) by 2 and 5, respectively.
The Rp between any two of these three velocity distri-
butions is 1. This means that these three are identical
structures, though they contain different amounts of
kinetic energy. Thus, Rp is an objective metric of the
similarity of the patterns without regard to the energy
content (magnitude), which is not always visually obvi-
ous in displayed vector structures. In addition, Rp pro-
vides a single value metric-of-comparison for the entire
distribution, which will be shown to be useful for com-
paring the structure of different modes.

POD analysis of in-cylinder flow

For the purpose of illustrating, two 200-cycle 2D PIV
data sets of motored in-cylinder flows25 were employed.
These data sets were selected because they represent
two extremes; one is a directed flow, which has every
cycle similar to ensemble average flow, and the other
one is undirected flow, which has no cycle appearing
like the ensemble average. The turbulence properties of
these flows were analyzed previously using Reynolds
decomposition26 and POD.22 Both flows were measured
in a single-cylinder, four-stroke optically accessible
engine with a pancake-shaped combustion chamber.
The PIV measurements were performed with a laser
sheet parallel to the head at TDC compression, bisect-
ing the 12mm clearance height. High spatial resolution

Figure 1. Three synthetic velocity distributions. The Rp

between any two of these three velocity distributions is 1.

310 International J of Engine Research 14(4)

 at UNIVERSITY OF ADELAIDE LIBRARIES on March 4, 2016jer.sagepub.comDownloaded from 

http://jer.sagepub.com/


film-based 2D PIV measurements captured the center
70mm diameter of the 92mm diameter cylinder, with
1mmx1mm (128 x 128 pixels) interrogation windows
on a 0.5mm grid. Electro-optical image shifting with
cross-correlation was used to resolve the directional
ambiguity.27 The samples were recorded every 12th
cycle in approximately 70 snapshots for each test. A
total of 200 velocity distributions were measured for
both the directed flow that was generated with a
shrouded intake valve and a relatively undirected flow
using a standard valve. The engine was motored at
1200 r/min, 40 kPa MAP (Manifold absolute pressure).

It is appropriate to comment on the effect of PIV
measurement velocity errors on the POD analysis.
Modeling by Westerweel28 predicts that 1% precision
can be achieved with PIV (0.1 pixel displacement-peak
location resolution with 8 pixel maximum displace-
ment), However, Megerle et al.29demonstrated empiri-
cally that 2% is a more realistic value with real particle
images. Though these analyses were performed for digi-
tal PIV, 2% error is considered a worst-case estimate
of the photographic PIV for the measurements used
here.25 This PIV error would then influence the POD
spectrum as the square or at an energy fraction of 4e24,
which would not significantly influence the lowest
order modes. Of course, in IC engines, false peak detec-
tion can occur in regions of wall light scattering, due to
inhomogeneous particle density, and in regions where
local/instantaneous flow velocities (statistical extremes)
are too large to be properly captured by the laser pulse
separation; these measurement errors can dominate the
flow and thereby appear in low-order POD modes.

POD with and without subtracting the ensemble
average

Chatterjee20 noted that it is valid to perform POD with
or without first subtracting the average, stating that
only the interpretation of the results change. The rela-
tionship between POD analysis and Reynolds decom-
position (ensemble average and turbulence) was
quantified empirically in a previous study,22 where
POD analysis was performed on the same two data sets
employed here, comparing the analysis with and with-
out subtracting the ensemble average. The purpose was
to assess when it is useful to subtract the ensemble
average prior to performing the POD and when POD
on the original data set is more meaningful.

For IC engine analysis, where the ensemble average
can vary with the same time and spatial scales as the
turbulence, POD analysis of velocity distributions with-
out mean subtraction is advantageous. It was demon-
strated that without subtracting the average, POD
mode1 provided an excellent estimate of ensemble aver-
age flow pattern, with Rp . 0.999 for both the directed
and undirected flows.22 Also, the kinetic energy content
of mode1 was within 0.1% and 8% of the ensemble
average kinetic energy for the directed and undirected

flows, respectively. Thus, based on equation (9), the
kinetic energy of the ensemble average can be estimated
by summing the POD mode 1 coefficients from each
cycle (snapshot) as

KEave’
1

2K

XK
k=1

c
(k)
1

� �2
ð11Þ

Therefore, the coefficients of mode 1 can be used as a
metric for the prevalence of the ensemble average flow
in each cycle, which are both the most probable flow
structure and the RANS decomposition mean.

Further, it was demonstrated that modes 2� 200
contain the orthogonal basis functions and energy of
the RANS turbulence,22 which is estimated as

KEturb’
X200
m=2

1

2K

XK
k=1

(c(k)m )
2

" #
ð12Þ

Chen et al.22 also demonstrated that every flow struc-
ture from every snapshot is, to some degree, in every
mode; the structures are distributed amongst the modes
such that each snapshot can be uniquely reconstructed
by summing over the product of modes and coefficients
specific to that snapshot. Thus, physical interpretation
of these modes (patterns) is not intuitive. Nonetheless,
equation (12) provides a means to unambiguously com-
pute the RANS turbulence energy of each cycle (snap-
shot); the coefficients can provide the spatially averaged
RANS turbulence for each cycle and, since the modes
retain the spatial information, can provide the spatial
distribution of the RANS turbulence energy within
each cycle.

Quantifying cyclic variation using POD

In this section, we exploit the properties of equations
(11) and (12) to quantify the cyclic variability of the
RANS ensemble average and RANS turbulence based
on POD, thus, using energy decomposition rather than
temporal or spatial filtering with an arbitrary cut-off
frequency.

As shown in the section ‘Mathematical procedures

of POD’, 1
2 c(k)m

� �2
represents the energy that the mth

mode contributes to the kth cycle. Since the mode 1 is
an excellent estimate of the ensemble-averaged flow

pattern, 1
2 c

(k)
1

� �2
for each of the 200 cycles can be used

to quantify the kinetic energy of the ensemble average
flow structure contained in each cycle. Similarly, it is
possible to quantify the cyclic variability of the RANS
turbulent kinetic energy. Since modes 2 � 200 contain
the energy of RANS turbulence, equation (12) can be
used to compute the energy contained in the RANS
turbulence modes of each of the 200 cycles where

KEturbð Þk =
1

2

X200
m=2

(c(k)m )2 ð13Þ
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Figure 2 shows the cyclic variability of the energy
associated with mode 1 (KEave) and the absolute turbu-
lence flow energy in modes 2–200 (KEturb) for all 200
cycles. These values of course represent the spatially
averaged over the field-of-view for each cycle (snap-
shot). The prominent features are that the KEave of the
undirected flow is much lower at TDC than for the
directed flow due to higher dissipation, which was
revealed by the measured and computed results in this
engine by Reuss et al.30 in a previous RANS-based
analysis. Also, KEave of the undirected flow is at the
same absolute magnitude as KEturb, which in turn is
about the same for both the directed and undirected
flows, as was found by Funk et al.26 Figure 3 shows the
spatially averaged turbulence intensity within each
cycle. Clearly, the turbulence intensity of the undirected
flow is much higher due to the low KEave. These obser-
vations are all consistent with the traditional RANS
analysis of Funk et al.26

Figures 2 and 3 demonstrate that POD analysis can
provide four new metrics not provided by the usual
RANS decomposition. First, POD has provided a
mechanism to unambiguously separate the RANS aver-
age energy from the RANS turbulence energy on a
cycle-by-cycle basis, thus providing the cyclic variability
of each. Second, POD shows the RANS average (most
expected structure) for the directed flow dominates the
turbulence in every cycle, as could previously only be
concluded through cycle-by-cycle visual observation.23

For the undirected flow, the cyclic variability of the
RANS average far exceeds the cyclic variability of the
RANS turbulence; this discrimination could not be
achieved using the RANS decomposition since all root
mean square (r.m.s.) fluctuations about the mean would
be included in the turbulence. Third, the coefficients
provide cyclic variability of the spatially averaged value
of RANS turbulence for each cycle. In addition, since
the modes still contain the spatial information, the local
increase (decrease) of either can also be derived within
each cycle, provided that high-speed imaging data are
available. Thus, POD modes 2 and above provide new
metrics for correlating and modeling the flow properties
with fuel mixing, heat transfer, turbulent flame propa-
gation, etc., since they retain simultaneous spatial and
temporal (cycle-to-cycle) information not available
from the RANS decomposition. In particular, POD can
provide a mechanism to conditionally sample and cor-
relate cycles with the rare/extreme flow events. It can
provide a quantifiable metric to test if errant combus-
tion cycles are dominated by the ensemble average cyc-
lic variation or the turbulence cyclic variation, as well
as how far from the cycle mean they must be to induce
‘bad’ combustion cycles. Having identified the features
of the errant cycles, the POD modes provide the possi-
bility that the errant flow feature can be identified.
Finally, Table 1 demonstrates that POD can provide
cycle-averaged statistics, quantifying cyclic variability
parameters for comparing different test conditions.
Thus, probability distribution functions (PDFs) of the
coefficients can be used to quantify and discriminate
the cyclic repeatability of engine designs and operating
conditions.

A cautionary note is in order. The proposed metric
for cyclic variability requires that equations (11) and
(12) hold true, as for the two data sets used here. It is
reasonable to imagine an extreme data set where the
mean is near zero, in which case, the most energetic
mode (mode 1) could not be the mean. Thus, it is
always necessary to test for the equivalence of mode 1
and the ensemble average prior to proceeding with the
analysis.

Comparison of data sets using POD

One of the main purposes of using POD is the analysis
of differences and commonalities between data sets.
This could be a comparison of computed LES cycles
with measured PIV cycles, or sets of all measured or all
computed data. It is usual in the literature to assess
equivalence using the energy spectra (energy fraction
and cumulative energy versus mode number). However,
since the modes are an empirically formed basis, the
modes from two different samples are not necessarily
the same. Thus, it is worth demonstrating the impor-
tance of using the relevance index to quantify the equiv-
alency of the mode patterns in addition to the energy
spectra.

Figure 3. The ratio between turbulence energy and ensemble
average energy for all 200 snapshots, for directed and
undirected flows.

Figure 2. POD-derived ensemble average and turbulence
energies for all 200 snapshots obtained from POD coefficients
for directed and undirected flows.
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Separate or combined-sample for
application of POD

An important question is whether to perform the POD
on the two data sets separately or to combine them into
a single sample then perform the POD.11,16 As with
any statistical method, the two data sets must have the
same number of samples to create an unbiased compar-
ison and, in the case of POD, must be on (or mapped
on to) identical grids to create comparable modes. Two
truly identical data sets should separately generate two
identical POD basis sets. Rp could be used to show the
basis functions are identical, and the energy spectra can
be used to demonstrate that they have the same mode
energy. Two data sets could be different either because
no cycles are the same or because some, but not all
cycles, are the same. In this case, having a single POD
mode set allows the use of the coefficients to analyze
the equivalency of these two data sets.

To illustrate the benefits of analyzing a combined
set of data rather than separate data sets, the 200 PIV
samples were divided into two samples: 100 cycles were
randomly selected from the 200 cycle sample to form
subsample 1, and the remaining 100 cycles used to form
subsample 2, for each flow configurations. The POD
results from the two separate subsamples are shown in
Figure 4, which shows energy fraction and cumulative
energy fraction captured by the first 20 POD modes.
Figure 5 shows the modes from subsample 1 projecting
onto the modes from subsample 2, for (a) directed and
(b) undirected flows, respectively. As shown in Figure 4,
the energy fractions captured by the modes are very
similar for the two subsamples. The differences are less
than 1.6%. However, the relevance index analysis
shown in Figure 5 presents a different picture in that all
modes except mode 1 are different in their spatial struc-
ture. This suggests that comparing energy fractions
alone can be misleading: the POD modes can be really

Figure 4. Energy fraction and cumulative energy fraction comparison between subsamples for (a) directed flow and (b) undirected
flow.

Table 1. Average, standard deviation, and coefficient of variation (COV) of ensemble average energy (Eave), turbulence energy
(Eturb), and the ratio between turbulence energy and ensemble average energy (Eturb/ Eave) for all 200 snapshots, for the directed and
undirected flows plotted in Figure 2.

Directed Undirected

Eave Eturb Eturb/ Eave Eave Eturb Eturb/ Eave

Average 1,898,337 107,602 0.057 87,776 113,838 7.9
Standard deviation 144,286 12,660 0.009 43,734 26,342 72.1
COV 8% 12% 16% 50% 23% 915%
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different even if the energy fraction is similar. Further,
this demonstrates the added complexity in quantifying
and interpreting the comparison of two data sets with
two different mode sets. Since the flow patterns have
been distributed between different modes (cf. Figure 5),
it is difficult to unambiguously quantify equivalency.

Conducting the POD after combining the two data
sets into a single sample will create a single POD mode
set, thereby allowing the use of the coefficients or ener-
gies to analyze the equivalency of these two data sets.
To illustrate this, the two data sets used in Figures 4
and 5 are analyzed using the coefficients based on the
POD analysis from the combined data sets. The two
PDFs, conditionally sampled on the first and second
subsamples, are shown in Figure 6. Because the coeffi-
cients of the two subsamples are within the same range
of values and the coefficients were from same mode set,
a level of equivalency is demonstrated.

The use of combined data sets, but applied to scalar
measurements, was illustrated by Chen et al.11 In that
study, POD analysis of equivalence ratio and velocity
were used to investigate the differences between nor-
mally burning and misfired cycles using the coefficients
from a single mode set generated from a combined data
sample.

Impact of data resolution

The spatial resolution from experimental data (PIV)
and simulation data (LES) is not necessarily the same.
Therefore, it is useful to investigate the effect of spatial
resolution on POD analysis. Here, the POD results
from a fine and coarse grid are compared. The original
velocity field spatial resolution is 1mm on a 0.5mm
grid.25 The resolution of the data sets was reduced by
first applying a 1mm Gaussian filter to the 0.5mm grid,
then mapping the data on to a 4mm grid by retaining
only every 64th (83 8) grid node.

Figure 7 shows the cumulative energy fraction
obtained from POD for these two spatial resolutions.
Data for the 4mm resolution set converges with mode
number slightly faster than that of the 1mm resolution,
i.e. the lower order modes contain more of the total

energy. Low-pass spatial filtering removes small-scale
structures, presumed to be at lower energy (higher
modes numbers), and brings the filtered field closer to
a spatially averaged result. Thus, the first mode is
expected to have a higher energy fraction as it is a bet-
ter estimate of the ensemble average.

The total energy (based on V2) listed in Figure 7 is a
reminder of the necessity to keep track of the mass of
kinetic energy, as was discussed with equations (7) and
(8). Decreasing the grid spacing means each vector rep-
resents 64 times more mass on the 4mm3 4mm grid
and, therefore, should have 0.5mm3 0.5mm3 64 times
the kinetic energy based on mass. Figure 7 shows that
the low-resolution data (4mm grid) has 1/64.8 and 1/69.9
less energy for the directed and undirected flows, respec-
tively, rather than the 1/64 expected from the grid spac-
ing (mass) alone. The difference to the expected value is
due to the dissipation from the spatial-averaging filter.
Some numerical dissipation can be expected for any grid
remapping and thus affect the low-energy higher modes,
as demonstrated by the plot in Figure 7.

The effect of the resolution on the mode pattern is
shown in Figure 8. The relevance indexes of the first 40
modes of the unfiltered, 0.5mm grid are projected onto
the low-resolution subgrid (4mm), only where the sub-
grid nodes exist. The results from the directed flow
show that the corresponding modes are almost identi-
cal (Rp close to 1) for the first 10 modes and Rp . 0.9
for the first 15 modes. Thus, the lower order (high-
energy) POD modes are not significantly affected by
the spatial resolution of the smaller spatial scales. A
similar conclusion can be made for the undirected flow.
The exceptions are modes 6 and 7, which had a signifi-
cant decrease of Rp, though still near 0.9. Drawing on
the principles that were based on POD analysis of the
synthetic velocity distributions,22 we speculate that the
lower values of modes 6 and 7 show the lower resolu-
tion due to the elimination of either a few very high-
energy small-scale velocity structures, or many small
structures that occurred with the same pattern and
location in many cycles.

POD is energy based, and the higher the mode num-
ber, the lower the fraction of energy contribution to the

Figure 5. Modes from subsample 1 projecting onto the modes from subsample 2 for (a) directed and (b) undirected flows.
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total flow. These findings are in agreement with the
application of spatial filtering in Funk et al.26 in that
less energy is contained in small-scale structures and

therefore the spatial filtering has little effect on the
energy fraction contained in the low-order (most ener-
getic) modes. This should not be considered universal;

Figure 6. The two PDFs conditionally sampled on the first and second subsamples, but using the coefficients from the combined
POD analysis for (a) directed and (b)undirected flows.

Figure 7. Cumulative energy fraction for two spatial resolutions.
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a different result might be found in flows with highly
energetic small-scale structures.

Number of required input files

A method is required to assess the sample size required
to create POD modes that have converged. The discus-
sion of convergence is not simple since the number of
created modes is equal to the number of input snap-
shots. Thus, adding additional snapshots to an input
data set will redistribute the energies amongst the new
larger number of modes, according to equation (1). It
is usual in the literature to compare POD energy spec-
tra to observe mode convergence, thus energy fraction
is a logical choice to use here as well. However, as with
the use of sequential data sets, comparing energy frac-
tion spectra of dissimilar mode patterns is a poor test
of equivalency. The utilization of the relevance index is
again useful to quantify the similarity of mode patterns,
to assess when they have converged.

To demonstrate a method for evaluating mode con-
vergence with the number of snapshots, modes from
different sample sizes are compared with the same num-
bered modes from the full 200 snapshots in Figure 9.
Flow pattern (relevance index), energy fraction spectra,
and cumulative energy fraction are shown for both the
directed and undirected flow. Taken together, the rele-
vance index and energy fraction show that at least 120
snapshots are required in order to get a converged solu-
tion. However, the energy spectrum converges faster
than the flow pattern (relevance index). This is clearly
shown by the 80 sample set, where the energy has con-
verged, and Rp has not. Thus, Rp is again shown to be a
more sensitive metric for discrimination of the equiva-
lency of two mode sets as they approach convergence.

Traditional statistical methods can also be used to
estimate the error of a sample mean and variance as a
function of sample size. This would then of course esti-
mate the statistical error in mode 1 and the sum of
modes 2�M, respectively. Assuming large samples and
Gaussian distributions, Baker et al.31 estimate the mean

error as StdDev/ and r.m.s. error as StdDev=ffiffiffiffi
N
p
�mean

� �
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= N� 1ð Þ

p
, respectively. Using the

values in Table 1, estimates of the statistical error in
the ensemble average of the directed and undirected
flows, respectively, are determined to be 2% and 12%
for 20 samples. This then explains the lack of variation
in mode 1 with sample size. The statistical error in the
turbulence of both flows is estimated to require 120
samples just to achieve 13%, which is consistent with
the improving but not yet convergedRp. Figure 9
demonstrates that the energy spectra are insensitive
metrics as they are converging before reasonable values
of statistical convergence are achieved. However, Rp

spectra do approach convergence at the same rate as
the statistical error approaches small errors.

This demonstrates that the number of available
snapshots could significantly affect the conclusions that
are drawn from the POD analysis, and the convergence
of the modes should be verified before using both the
POD modes (relevance index) and energy fraction. This
is true for both the directed and undirected flows pre-
sented here. It should be noted that the number of
snapshots required in these two data sets should not be
considered universal; the data here is only an illustra-
tion of a procedure to quantitatively evaluate the num-
bers of modes and snapshots required to achieve
convergence.

Conclusions

This paper has provided procedures and interpretation
for the application of POD to issues unique to recipro-
cating IC engine flows. The mathematical procedure of
POD has been described conceptually, and a compact
MATLAB� code provided. Two in-cylinder IC engine
motored flows were used to illustrate practical proce-
dures for its application and to illustrate the properties
of the POD analysis, empirically. The two-component,
2D data sets were measured in a previous study using
PIV.25 These two examples represent extremes of in-
cylinder flow. One data set was the result of a highly
directed intake flow, where every cycle appears similar
to the ensemble average at TDC; the other was a highly
undirected intake flow, where no cycle appeared similar
to the TDC ensemble average.

Expanding on the results of a previous study,22 the
present work demonstrates the following.

1. POD can be used to unambiguously quantify the
cyclic variability of the RANS average and RANS
turbulence energies using coefficients of the POD
modes. The RANS average and RANS turbulence
energies can be computed, either for the ensemble
of all cycles at a given hardware/test condition, or
for individual cycles. Since the POD modes retain
the spatial information of the flows, it is possible
to quantify the local spatial values as well. The
undirected flow configuration demonstrated that

Figure 8. First 40 modes of spatial resolution 4 mm case
projected onto the subgrid (4 mm) of modes from spatial
resolution 0.5 mm case.
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this procedure unambiguously separates the cyclic
variability of the RANS average as long as mode 1
is a good estimate of the ensemble average, which
otherwise would have been included in the r.m.s.
fluctuations of the RANS turbulence.

2. POD provides a mechanism for comparing two
data samples, e.g. experiments to experiments or
experiments to simulations. It was demonstrated
that POD energy spectra (energy fraction and
cumulative energy) are poor metrics of equivalence,
since the spectra of unequal mode sets (patterns)
can have similar spectra. Combining samples prior
to performing the POD provides a common POD
mode set so that the comparison can be quantified
with the coefficients alone.

3. Data sets were compared before and after a combi-
nation of spatial filtering and subsampling to a
coarser grid. Results demonstrated that this largely
did not affect the lowest 15 of 200 mode patterns
or energy for both of the data sets used here.

4. A procedure was demonstrated to evaluate the
number of snapshots required to achieve mode
convergence. It was demonstrated that POD
energy spectra (energy fraction and cumulative
energy) do not sufficiently discriminate between
large and small samples when compared with tra-
ditional statistical errors. Convergence of the rele-
vance index of Liu and Haworth17 is required to
ensure the number of snapshots is sufficiently large
for the POD modes to converge.

Figure 9. First five modes of subsamples projected onto same numbered modes of full 200 snapshots, energy fraction, and
cumulative energy fraction for (a) directed and (b) undirected flow.
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Appendix 1

Nomenclature

C spatial correlation matrix, equation (3)
c(k)m POD coefficient for snapshot number k

and the mode number m
\cm. K ensemble average over all coefficients for

mode number m
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D(1), D(2) scalar or velocity distributions
Eave ensemble average energy
Eturb turbulence energy
i, j index of the grid points in the snapshot
I, J number of total grid points in the

snapshot
k snapshot number
kem energy fraction captured by POD mode

number m
K total number of snapshots
KE kinetic energy, ½ rV2

KEave energy estimated with POD mode 1
KEm kinetic energy captured by POD mode

number m
(KEturb)k absolute turbulence flow energy estimated

in POD modes 2–200
M total number of POD modes
m POD mode number
N sample size
Rp relevance index, equation (10)

S Snapshot of a scalar distribution
StdDev standard deviation

s(k) scalar quantities distribution number k
U matrix for u velocity of snapshots
u
(k)
i, j velocity component at grid point (i, j) in

snapshot number k along x axis
V snapshot of the total-velocity distribution
v
(k)
i, j velocity component at grid point (i, j) in

snapshot number k along y axis
V(k) velocity distribution number k
\V. ensemble-averaged velocity distribution
bm eigenvector number m
d Dirac delta
lm eigenvalue number m
r gas density
um POD mode number m
�k k L2 norm

Appendix 2

POD code for velocity distributions

The POD codes for the work described in this paper
were developed using the commercial software
MATLAB�, Ver. 2009b. The code for velocity distribu-
tions is provided below and is available at http://
hdl.handle.net/2027.42/92348. Comments to explain
the code are shown in italics.

functionVelocityDistributionPOD(Snapshots Address)

Method of snapshots

Section 1 – input snapshots. Each snapshot (txt file) con-
tains four columns. The first two columns are the velocity
distribution grid point coordinates for the x and y direc-
tions, respectively. The last two columns are u and v velo-
cities, respectively.
files = dir([SnapshotsAddress,‘*.txt’]);
n_snapshots = size(files,1);

for j=1:n_snapshots
fid = fopen([SnapshotsAddress,files(j).name], ‘r’);
data = fscanf(fid,‘%f %f %f %f’,[4,inf]);
x = data(1,:); % x coordinate
y = data(2,:); % y coordinate
U(j,:) = data(3,:); % u velocity
V(j,:) = data(4,:);% v velocity
fclose(fid);

end

Section 2 – compute spatial correlation matrix C
c1 = U*U’;
c2 = V*V’;
C = (c1+c2)/n_snapshots;

Section 3 – solve the eigenvalue problem: C * EigenVector =
EigenValue * EigenVector
[beta, lmd] = svd(C);

Section 4 – calculate basis functions
phix = U’*beta;
phiy = V’*beta;
% Normalize basis functions
GridNum = size(x,2);
for j=1:n_snapshots
PhiNor = 0;

for i=1:GridNum
PhiNor = PhiNor + phix(i,j)^2 + phiy(i,j)^2;
end

PhiNor = sqrt(PhiNor);
phix(:,j)= phix(:,j)/PhiNor;
phiy(:,j)= phiy(:,j)/PhiNor;
end

Section 5–calculate coefficients
TimCoeU = U*phix;
TimCoeV = V*phiy;
TimCoe = TimCoeU + TimCoeV;

Section 6 – export basis functions
for a=1:n_snapshots

FilNamPhi = 1000+a;
PhiOut = fopen([SnapshotsAddress,num2str(FilNam
Phi),‘.txt’]’, ‘wt’);
fprintf(PhiOut, ’#DaVis 7.2.2 2D-vector 16 145 145
‘‘position’’ ‘‘mm’’ ‘‘position’’ ‘‘mm’’ ‘‘velocity’’ ‘‘m/
s’’\n’);
phia =[x;y;phix(:,a)’;phiy(:,a)’];
fprintf(PhiOut, ’%20.9f %20.9f %20.9f %20.9f\n’,
phia);
fclose(PhiOut);

end
% Write coefficients into excel file
xlswrite([SnapshotsAddress,’ TimCoe.xlsx’],TimCoe);
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