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Abstract
The proper orthogonal decomposition (POD) has found increasing application for the
comparison of measured and computed data as well as the identification of instantaneous and
time varying flow structures, particularly cyclic variability in reciprocating internal
combustion engines. The patterns observed in the basis functions or modes are sometimes
interpreted as coherent structures, though justification of this is not obvious from the
mathematical derivations. Similarly, there is no consensus about whether or not the ensemble
mean should be subtracted prior to performing POD on a data set. Synthetic flow fields are
used here to reveal POD properties otherwise ambiguous in real stochastic flow data. In
particular, each POD mode includes elements of all flow structures from all input snapshots
and in general, several modes are needed to reconstruct physical flow structures. POD analysis
of two experimental in-cylinder engine data is done: one flow condition where every cycle
resembles the ensemble-averaged flow pattern, and the other with large cyclic variability such
that no cycles resemble the ensemble average. The energy and flow patterns of the POD
modes, derived with and without first subtracting the mean, are compared to each other and to
the Reynolds decomposed flow to reveal properties of the POD modes.

Keywords: proper orthogonal decomposition, flow analysis, turbulence, engines, cyclic
variability, particle image velocimetry

(Some figures may appear in colour only in the online journal)

Introduction

In-cylinder turbulent flow is an important mechanism
controlling heat-transfer, fuel–air mixing and rate of
combustion in reciprocating internal combustion engines [1].
In-cylinder turbulence is created by the shear flow through
the intake valves and large-scale structures formed during the
intake stroke that break down and dissipate by the decreasing
volume (boundaries) during the compression stroke. Until
the availability of high-speed imaging capability in recent
years, imaging measurements usually employed phase-

3 Author to whom any correspondence should be addressed.

dependent sampling, where the velocity from many cycles
is ensemble-averaged at fixed crank-angle positions when
using particle image velocimetry. Time-dependent studies had
been restricted to point measurements using hot-wires or
laser Doppler velocimetry. Reynolds-averaged Navier–Stokes,
RANS, modeling similarly employs the concept of the average
(expected value) and turbulence, which is defined as the
fluctuation about the average. In most canonical turbulent flows
that were studied, the turbulence is a small perturbation about
the mean; thus, the mean shear from the RANS decomposition
is a good predictor of the turbulence, which is used to
predict the kinetic energy dissipation. In engines the ensemble
average may never be present in an individual cycle [2] and
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the statistical fluctuations about the average are conceptually
confounded by cyclic variability of large-scale high-energy
coherent structures. Thus the statistical fluctuations may or
may not be a good metric for modeling turbulence dissipation.
In recent years, the proper orthogonal decomposition (POD)
has gained popularity as an analysis tool for evaluating the
turbulence of in-cylinder reciprocating engine flows as it
provides hope for resolving the discourse between turbulence
and cyclic variability. Lumley [14] is generally attributed as
being the first to suggest POD for application to atmospheric
turbulence as a method to separate ‘big eddies’ in shear flows,
thought to

‘ . . . have scales on the order of the average flow,
the remainder of the turbulent motion has scales
substantially smaller, so that the net effect of this
smaller component may be lumped together as an
eddy viscosity with considerably more propriety than
usual.’

Conceptually, this is applicable to in-cylinder engine
flows, where large-scale, energetic structures associated with
cycle-to-cycle variability require an objective means to be
separated from the dissipating portions of the flow. POD has
been used in engine flow studies for about 10 years for a range
of topics as the following examples illustrate. Baby et al [3]
utilized POD to analyze PIV data taken in an optical engine to
show that POD can separate ‘true turbulence’ (in fact small
scale turbulent fluctuations) from cycle-to-cycle variations.
Druault et al [4] employed POD to determine flow information
between two consecutive PIV flow images. Roudnitzky et al
[5] implemented the POD technique to PIV measurements
obtained in the tumble plane of spark ignition engine flow.
The in-cylinder flow was decomposed into an average part,
a coherent part and a random Gaussian fluctuations part.
Fogleman et al [6] introduced a novel approach called phase-
invariant POD on both computational fluid dynamics (CFD)
and PIV data. The phase-invariant POD modes were desirable
to provide a suitable basis for low-dimensional models, which
would describe the breakdown process of tumble. Kapitza et al
[7] utilized POD to investigate the role of the intake port flow
on in-cylinder flow fluctuations. Vosine et al [8] also used
POD to investigate in-cylinder flow structures and their cycle-
to-cycle fluctuations. POD has also been used as an objective
means for comparing PIV results and data from large eddy
simulations [9, 10].

The interpretation and application of POD can be
perplexing. The patterns observed in the modes are sometimes
interpreted as extraction of coherent structures, though
justification of this is not obvious from the mathematical
derivations. For low-order estimates of the flows, Holmes
et al [11] suggest that the number of low-order modes should
capture 90% of the total energy and neglect no modes with
more than 1% of the total energy; this is a pragmatic truncation
of the spectrum but nonetheless an ad hoc definition. Often
discussed, but by no means obvious, is whether POD should
be performed with or without first subtracting the average; as
noted by Chatterjee [12] this does not affect the calculation,
but only the interpretation. It is commonly stated that the first
mode is equivalent to the ensemble mean.

Furthermore, it is a common practice to quantify the
equivalency of POD results of different sample sets and low-
order estimates of different velocity distributions using the
energy spectra and cumulative energy distributions. However,
equivalency of energy spectra is of reduced value if the basis
functions (‘flow’ patterns) are not equivalent. The relevance
index introduced by Liu and Haworth [9] is better suited to
quantify equivalency of flow patterns through a correlation of
the projection of one flow pattern onto another. Then, PDFs of
the POD coefficients can be employed to reveal the cycle-to-
cycle variability of modes.

Here, as also used by Kapitza et al [7], POD is first
applied to synthetic velocity snapshots to answer questions
about fundamental properties of POD not discernable from
the complexity of real turbulent flows. The intent is to gain
physical understanding by inputting velocity fields with known
characteristics and then observing the characteristics of the
resulting POD. The POD is then applied to two engine data
sets, which represent two extremes of in-cylinder flow [2]. One
extreme is the undirected flow using an undirected port and
standard valve, where the ensemble-average flow structure is
never observed in individual cycles. The other is a directed
flow produced by a shrouded valve, which creates a highly
repeatable high-swirl flow and the ensemble-average flow
pattern is apparent and dominant in every cycle. In production-
engine design, a directed flow is formed by either directed ports
(as in 4-valve pent-roof heads and Diesel engine ports) or by
valve shrouding (the upstream side of the valve or in the head-
casting around the valve) in an attempt to create a repeatable
combination of swirl and/or tumble flow. Though these two
flows here are not flows identical to those in modern engines,
they do represent two extremes likely to occur in an engine,
namely an ensemble-average flow that is either highly directed
versus undirected by the intake ports or valves.

The purpose of this study is to show (1) what physical
properties of the coherent structures are captured by the POD,
(2) how these properties are captured and distributed among
the modes and (3) provide the relationship between the POD of
the original velocity, V, the POD after subtracting the ensemble
average, V–〈V〉 and the RANS decomposition.

1. POD definitions

The POD technique decomposes the original velocity or scalar
field into a sum of weighted, linear, basis functions or modes.
It is considered an empirical basis because the functions are
computed from the structures in the original data fields rather
than prescribing them a priori as in Fourier decomposition,
which is an alternative linear basis. The creation of the basis
functions is a statistical correlation method that forces the
basis functions to be normalized and orthogonal. It is natural
to apply the POD to velocity, since the optimization of the basis
in L2 space separates and ranks the modes according to energy
[11]. Applied to scalar fields, the square of the intensity has
no physical meaning, but the basis functions and coefficients
are created just the same. As with velocity distributions, the
scalar POD is useful for extracting pattern features from scalar
intensity [13]. The POD can be carried out using either the
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classical method [14] or the equivalent method of snapshots
[15]. The method of snapshots is used here, as in most engine
applications, because there are usually far more measured data
(measurement or computational grid points) compared to the
sample size, and thus the method of snapshots is far more
computationally efficient [16]. Here, only the mathematical
descriptions necessary to define the nomenclature are repeated
as comprehensive descriptions are available in the literature
[11, 12, 16].

The input data for the POD consist of K two-
dimensional velocity fields (snapshots) sampled in time,
V (k) = (ui, j, vi, j)

(k). Here, i, j are the indices of the grid
points in the PIV measurement plane and k is the index of
the velocity field. In engine flows the samples can be phase
invariant where the samples are collected continuously in
time for many cycles, or phase dependent where samples are
collected at the same crank angle for many cycles [9]. For
this study, only the phase-dependent sampling is considered;
thus, V (k) is the velocity field at a given crank angle from the
kth cycle. The properties described in the results here are also
valid for scalar fields, three-dimensional and phase-invariant
samples of engine flows.

The POD produces a linear basis set consisting of M basis
functions ϕm and the corresponding coefficients c(k)

m , that can
reconstruct all K velocity distributions,

V (k) =
M∑

m=1

c(k)
m ϕm, (1)

where m is the mode index, with the total number of modes
equal to the total number of snapshots, M = K. The procedures
of determining the orthonormal POD basis functions ϕm are
detailed in [11, 12, 16]. In this study, the basis functions were
created with a Matlab code; comparison with a commercial
code (LaVision Davis 7.2) and the code of Liu and Haworth [9]
demonstrated computational speed within 2% and accuracy to
12 decimal places. The code minimizes the following function:

K∑
k=1

∥∥∥∥∥V (k) −
M∑

m=1

c(k)
m φm

∥∥∥∥∥
2

→ min (2)

subject to

(ϕi, ϕ j) = δi j =
{

1 if i = j
0 if i �= j

,

where ‖‖ denotes the L2 norm. The basis functions contain the
‘flow patterns’, normalized in L2 space so that the sum of the
squares of all the vectors in an individual basis function ϕm is
unity [11]:

I∑
i=1

J∑
j=1

(
μ2

i, j + ν2
i, j

) = 1, (3)

where μ and v are the x and y components of ϕ, respectively.
Furthermore, each basis function is orthogonal to all others,
i.e. ∫

ϕm(x)ϕp(x) dx = δm,p. (4)

These two properties define the basis functions as orthonormal.

The K × M coefficient matrix c(k)
m ,

ck
m =

⎡
⎢⎢⎣

c1
1 c1

2 . . . c1
M

c2
1 c2

2 . . . c2
M

. . . . . . . . . . . .

cK
1 cK

2 . . . cK
M

⎤
⎥⎥⎦ , (5)

contains the amplitude that the corresponding basis function
contributes to a particular snapshot. The coefficients are
computed by projecting the original K velocity fields onto the
M computed basis functions. Thus, in this study the velocity
field from the kth engine cycle can be reconstructed4 by
summing all M modes multiplied by their respective coefficient
for that cycle using equation (1). Since ϕm is normalized and
c(k)

m is the amplitude, 1
2

(
c(k)

m

)2
quantifies the kinetic energy per

unit mass the mth mode contributes in the kth velocity field.
The POD mode spectrum is often used to describe the

energy fraction each mode captures of the total ensemble of
snapshots. The mass specific kinetic energy from all of the
cycles captured by the mth mode is

KEm = 1

2

K∑
k=1

(
c(k)

m

)2 = 1

2
K · λm. (6)

Thus, equation (6) relates the coefficients to the eigenvalue
[11]. The energy fraction of the mth mode is

kem = KEm/KEtotal, (7)where

KEtotal =
M∑

m=1

KEm. (8)

Thus, KEtotal is the total kinetic energy summed over all K
velocity distributions. The mode order of the POD spectrum
is defined as m = 1 → M according to their energy fraction,
mode 1 having the largest energy fraction and KEm > KEm+1

for all m. This spectrum defines the concept of ‘low-order
reconstruction’ and ‘low-order modeling’ described in the
literature. In particular, most of the energy in the flow often
can be captured from the first few modes. Holmes et al
suggest that a lower order estimate contains at least 90% of
the total energy and neglect no modes with more than 1% of
the total energy [11]. Low-order reconstruction is consistent
with Lumley’s original aspiration quoted in the introduction,
where it is desired to decompose the flow into large energetic
coherent structures and smaller turbulence motion associated
with smaller scales.

As noted in the introduction, here POD is applied prior to
or after subtracting the average velocity. If the POD is applied
without subtracting the average, the reconstructed ensemble-
averaged velocity field is related to the POD through the cycle-
averaged coefficients and the POD modes using

〈VM′ 〉 =
M′∑

m=1

[
1

K

K∑
k=1

c(k)
m

]
ϕm =

M′∑
m=1

〈cm〉(K)ϕm, M′ = 1 → M,

(9)

where the operator 〈cm〉(K) indicates the ensemble average of c
over all cycles (snapshots) for a given mode. Equation (9)

4 Reconstruction will be used throughout this paper to indicate the
computation of the velocity distribution as per equation (1), for one or more
modes, m, and for one or all snapshots, k, as indicated for each instance.
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demonstrates that a low-order estimate is achieved with a
truncated set of M′ modes and the exact ensemble average
is achieved when all modes are used and M′ = M. The
quantitative implications of this will be demonstrated in the
results section.

In the analysis that follows, it is useful to quantify the
degree to which the flow patterns of either two velocity fields or
two basis functions are similar or dissimilar. This is important
because there is less value comparing energy of two POD
modes if the POD modes are not the same. To this end the
relevance index Rp will be used [9]. Rp is obtained by projecting
one velocity field V(1) onto another velocity field V(2),

Rp = (V (1),V (2))

‖V (1)‖‖V (2)‖ . (10)

The numerator denotes the inner product of two velocity
fields, and ‖·‖ denotes the L2 norm (for POD modes, equal
to 1). The value of the relevance index varies from −1 to 1.
Rp = 1 if the two velocity fields are identical, Rp = −1 if the
two velocity fields are identical but exactly opposite in sign,
and Rp = 0 if two POD modes are orthogonal. Using POD
modes with or without multiplication by the POD coefficients
(amplitude) gives the same Rp. Thus, Rp is an objective metric
of the similarity of the patterns without regard to the energy
content (magnitude), which is not always visually obvious in
displayed vector structure.

2. Interpretation of POD of synthetic flow fields

Simple synthetic velocity fields are created here by
superposition of individual 2D structures on a 2D grid. They
are employed here to isolate five fundamental properties of the
POD. The discussion is not unique to engine flows and also can
be extended to POD of scalar/intensity fields. The properties
of these synthetic velocity fields were conjured in response
to questions raised while investigating POD of the real
turbulence. The fundamental synthetic element was a vortex
Vv . It is asymmetric in its spatial dimensions and contains shear
(not solid body rotation). The maximum velocity within the
vortex is 2 m s−1 and the total energy is 22 m2 s−2. Synthetic
flows were then constructed by superimposing the number
and magnitude of the vortices onto a background as described
below. Of course, numerous synthetic flows could be conjured
and for good reasons; the ones used here include features
observed in the measured flows that are also discussed in this
paper.

2.1. Example 1: POD mode capture of coherent structures

Figure 1 demonstrates how coherent structures are captured by
and distributed throughout the modes. The four velocity fields
were synthesized with five flow structures, four randomly
placed vortices and a uniform background flow. Each of the
vortices has identical structure Vv , but the magnitude of the
vortex is different for each of the four fields as noted in figure
1(a). For this example, they are superimposed upon (added to)
identical uniform velocity distributions of 4 m s−1, (u, v) =
(4, 0) m s−1, which have a total energy of 4928 m2 s−2, thus,
creating the input velocity fields as shown in figure 1(b). The

vortex magnitudes were chosen with a maximum velocity less
than the mean flow. The magnitudes of the vortex velocities
were scaled (as indicated in figure 1(a)) so that each has a
unique energy content. The superimposed vortices in the four
input velocity fields are difficult to detect, appearing only as
blurry modulations. These properties were chosen to create
idealized grid turbulence, where the temporal and spatial scales
of the average are clearly separated from those of the coherent
structures. The four basis functions ϕ1–4 resulting from the
POD analysis are shown in figures 1(c) and (d); note that the
ensemble average has not been subtracted. In figure 1(d), the
display perspectives have been changed to show that some
elements of all four vortex structures are present in all four
modes. The spatial average, |ϕ1|, has been subtracted from
ϕ1 to bring out the spatial structures, and the display scale was
changed for the other three modes. The coefficients are listed
in figure 1(e), which shows the sign and magnitude by which
each ϕn is scaled. This example demonstrates two important
properties of the POD.

Property 1. The flow pattern of every structure from
every velocity field (background and vortex) is contained in
every mode. The modes are not themselves individual coherent
structures as some times implied by verbal descriptions in the
literature. This is demonstrated in figure 1(d).

Property 2. Given that every structure is present in every
basis function, the velocity magnitudes in the basis functions
(flow patterns) and the sign and magnitude of the coefficients
are distributed such that the velocity structures in a given
snapshot are reconstructed, while structures not present in a
given snapshot are eliminated (have zero magnitude).

First, consider the uniform background that is in the
positive x direction in the velocity field but in the negative x
direction in ϕ1. Thus, the coefficients c(k=1−4)

1 are negative.
Furthermore, the coefficients are large for all k, since the
background flow has far more energy than the vortices and
is identical for all k. Now consider reconstruction of V(4) using
all four modes, ϕm,m = 1–4 and coefficients c(4)

m=1−4 according
to equation (1) (figure 1(e), bottom row). Since V(4) contains
the strongest vortex, most of its energy is captured in the
amplitude of ϕ1 and ϕ2 and the coefficients c(4)

1 and c(4)

2 ;
higher order modes contribute much less modulation of the
vortex Vv

(4). However, the sum of the contributions from all
four modes times the respective coefficients must sum to zero
for the other three vortices, Vv

(1–3), since they do not exist in
V(4). Furthermore, the magnitude of the uniform flow must
be modulated between the modes, such that in each fully
reconstructed velocity field V(k) it has the same uniform value.
Similar insight can be gained by comparing the coefficients
used for reconstructing the other input velocity fields, V(1–3).

This example also demonstrates an important principle
about displaying the structure of velocity distributions. In
particular, it is necessary to plot the distributions from a
perspective that reveals the low-energy structures. The absence
of the appearance of a coherent structure in a mode does not
necessarily mean that the mode contains only random noise,
but only that it may have a small magnitude (low energy)
compared to other structures in that mode.
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(a) (b) (c) (d)

(e)

Figure 1. Four synthetic velocity distributions. (a) Input vortices, (b) input velocity fields (vortex + uniform flow), (c) POD basis functions
displayed at the same scale, (d) basis functions displayed with different perspectives and (e) the coefficient matrix corresponding to the four
modes and four velocity fields. Vv has a maximum of 2 m s−1 and a KE = 22 m2 s−2. The uniform background velocity is 4 m s−1, KEb =
4928 m2 s−2.

2.2. Example 2: POD of repeated identical structures

Figure 2(a) demonstrates how the energy of identically
repeated structures is distributed among the modes. Using the
same fundamental vortex element as example 1, five unique
vortex elements were created from a single flow pattern with
amplitudes scaled to create the energy variations noted in
figure 2(a); the second vortex was repeated in 15 snapshots
and the third vortex repeated in 5. These vortices were
superimposed on 23 low-energy random background velocity
fields used here only to provide quantitative energy differences
between identically repeated vortices. V(1) contains the single
most energetic structure, which occurs in only one snapshot.
V(2)–V(16) contain the weakest structures but these occur often
(15 times) at the same location and with the same orientation.
The magnitude and repeated occurrence of the other three
unique distributions are given in figure 2(a); V(17)–V(21) are
stronger than V(2)–V(16) but occur only five times and, finally,
the vortices in V(22) and V(23) have identical structure but
different signs and magnitudes. The first five of the 23 POD
modes for example 2 are shown in figure 2(b). As in example 1,
all five structures are contained in all 23 modes; for example,

the vortex pattern V(2–16) is weakly discernable in ϕ2 and ϕ5.
Since the coefficient matrix is large (23 × 23), the coefficients
of the first four modes are provided graphically in figure 3(a).
Comparison of the coefficient values in figure 3(a) with the
basis functions and snapshots in figure 2 support assertions in
property 2 that was discussed in section 2.1.

Property 3. Coherent structures with identically repeated
position and orientation are placed in modes according to their
ensemble total energy.

Example 2 reveals the following additional properties of
the POD.

One strong structure can appear in a higher mode than
weaker structures that occur often. The inverse is also true.
This is demonstrated by the vortices in snapshots V(1), V(2)–
V(16) and V(17)–V(21) appearing in the order of ϕ2, ϕ3 and ϕ1,
respectively, according the energy totaled across all snapshots.
It is of course important to remember from example 1 that each
of these vortex flow patterns are present in every basis function,
but with different amplitudes.

Property 4. Two coherent structures with identical flow
patterns that differ only by magnitude (energy) and sign are
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(a) (b)

Figure 2. Twenty three synthetic velocity distributions with
identical vortices superimposed on a random background. (a) The
input velocity fields for POD analysis and (b) first five POD modes
and with mode energy. Vv has a maximum of 2 m s−1 and a KE =
22 m2 s−2. The background velocity, u and v, is randomly distributed
on the interval [−0.1, 0.1] m s−1 with KE � 2 m2 s−2.

dominant in a single basis function; the snapshot-to-snapshot
difference is captured by the corresponding coefficients.

This is demonstrated by V(22) and V(23), which have
identical position and orientation (the appearance of the tilted
orientation is a result of the display, where the tails of the
vectors are at the grid nodes and the vectors differ in sign
and magnitude). Both are dominant in ϕ4 and, based on the
coefficients c(n)

4 shown in figure 3(a), ϕ4 only contributes
significantly in snapshots k = 22 and 23. This exemplifies
the amplitude modulation of the basis function’s flow pattern
by the coefficient. Inspection of the POD coefficients from
example 2 in figure 3(a) reinforces properties 1 and 2 as
well. Every mode contributes to the reconstruction of every
snapshot, k, since c is never identically zero. Though the
contributed energy may be negligible, it is necessary to negate
the presence of the coherent structures in the other modes.

The PDFs of the coefficients for modes 2 and 3 are
shown in figure 3(b) to reinforce this premise. The vortex
of V(1) occurred only once, and is dominant in ϕ2. Thus, c(k)

2

had a large negative value once, but is present many times near
zero to negate its presence in other cycles (snapshots). Mode
3 captures the 15 occurrences of the weak vortex (V(2)–V(16))
and thus the PDF has many occurrences at a large negative
value, but still many with small values near zero to negate
its presence in snapshots where it is not present. Figure 3(b)
also demonstrates the usefulness of the coefficient PDF’s to
quantify the cyclic variability of each mode’s contribution to a
particular flow field realization. This will be revisited with the
discussion of measured engine flows.

2.3. Examples 3 and 4: POD of translated and rotated
overlapping structures

In examples 1 and 2, the vortices in different velocity fields
were clearly separated in space. In real flows, the location of
coherent structures are not necessarily separated from snapshot
to snapshot, but would be expected to overlap, be slightly
translated or have a change in orientation. In examples 3 and
4, shown in figure 4, POD is performed on two velocity fields;
the velocity fields contain the same vortex structure and energy
as example 1 but with no background flow. In example 3, the
vortex in V(2) is translated to the right of V(1), with three of the
five columns overlapping. In example 4 the vortex in V(2) is
not translated but velocity distribution is rotated (on identical
grids) by π/6 compared to V(1); recall that the structures are
non-symmetric and have shear, and thus are not identical under
rotation. In both examples, the second (lower energy mode) is
necessary to properly reconstruct the original velocity fields
V(1) and V(2), even though the second modes appear to be non-
physical turbulent flow patterns. Thus, small translation and/or
rotation of a structure between snapshots create non-physical
patterns in the modes. From that the following statement is
derived.

Property 5. POD does not necessarily create modes that
show physical flow structures. The modes must be summed to
reconstruct the physical velocity distributions.

Based on examples 2–4, it is noted that only if the
structures are identical between snapshots (or a very strong
structure in one snapshot) will a mode create a flow pattern
that is equivalent to the physical coherent structures. This is
shown most clearly by Chen et al [21], where an entrainment
vortex appeared at the trailing edge of a fuel injection event; the
vortex was very apparent in the first mode, and in the second,
which would modulate its strength. This also demonstrates the
converse; a basis function may not ‘appear’ to be a coherent
structure, but this does not mean it is noise or unimportant to
creation of a coherent structure in a specific snapshot (cycle).
The point here is that if a coherent structure occurs randomly
in space (spatial phase) it may not be apparent in any mode if
it is modulated by other structures.

3. POD analysis of measured in-cylinder engine flows

Compared to the synthetic velocity distributions, in-cylinder
velocity fields contain the superpositions of a much larger
number of multiple randomly distributed structures on many
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(a)

(b)

Figure 3. (a) Coefficients of first four POD modes for all 23 input velocity fields (the coefficients of higher modes are around 0, not shown
here.) (b) PDFs of coefficients for mode 2 and mode 3 in (a).

(a) (b) (c) (d)

Figure 4. Input velocity distributions of two identical vortices after translation (a) and POD modes (b) (example 3). Input velocity
distributions of two identical vortices after rotation about its center (c) and POD modes (d) (example 4).

spatial scales. In the following, measured velocity distributions
are used to compare the energy content and flow patterns
of the POD versus Reynolds decompositions to address
the question whether POD should be performed with or
without prior subtraction of the ensemble mean. For this
purpose, two 200-cycle 2D PIV data sets for directed and
undirected in-cylinder flows [2] are employed. These data were

measured to reveal the cyclic variability of flow structures, and
were analyzed previously employing the traditional Reynolds
decomposition [17]. These data were chosen as they represent
two extremes: the directed flow having every cycle appearing
like the ensemble average, and the undirected having no
cycles appearing like the ensemble average [2]. Both 200-cycle
data sets were taken in an optical single-cylinder four-stroke
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(a) (c)

(b) (d)

Figure 5. 〈V〉 and ϕ1 for the directed engine flow (a) and (b), and for the undirected engine flow (c) and (d). One out of 16 vectors is shown.
Rp is for the projection of ϕ1 onto 〈V〉.

two-valve engine with a pancake shaped combustion chamber
[18]. The PIV measurements were made with laser sheets
parallel to the head at TDC (top dead center) compression,
bisecting the 12 mm clearance height. Film-based, two-
dimensional PIV measurements captured the 70 mm diameter
center of the 92 mm diameter cylinder, with 1 mm × 1 mm
(digitized to 128 and 128 pixel) interrogation spots on a
0.5 mm grid. Electro-optical image shifting with cross-
correlation [19] was used to resolve the directional ambiguity.
The samples were recorded approximately every 12th cycle
from three separate tests (in approximately 70 snapshots per

test) resulting in 200 snapshots for each data set. The engine
was motored at 1200 rpm and 40 kPa MAP for both cases.

This following section quantifies the relationship between
the traditional RANS decomposition (ensemble average and
turbulence), the POD modes of the 200 original velocity
snapshots, V, and the POD modes of the 200 velocity snapshots
after subtracting the average, V–〈V〉.

3.1. POD and the ensemble average

The flow patterns of the first POD modes created from
the original velocity distributions, V, are compared to

8
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Figure 6. Relevance index (equation (10)) showing the rate that the
flow pattern of the reconstructed ensemble average flow pattern,
〈VM′〉, (equation (9)) approaches the true ensemble-average, 〈V〉, as
more modes are used for the reconstruction (M′ increases from
1 → M).

ensemble-averaged 〈V〉 flow patterns in figure 5. The relevance
indices Rp of ϕV

1 projected onto 〈V〉 are included as well. (Note
that the superscript to the basis function here indicates whether
the full velocity fields, V, or the Reynolds decomposed fields,
V–〈V〉, are used). The appearance of the patterns (centered-
swirl for the directed flow and offset-swirl center for undirected
flow) and the near unity relevance indices Rp demonstrates that
the mode 1 flow pattern is an excellent (low order) estimate of
the ensemble-averaged flow pattern for both flows. The nega-
tive value of Rp indicates that ϕV

1 has an opposite direction, with
the expectation that the coefficients will be negative (as will be
shown later). However, figure 6 demonstrates that they are not
fully identical since Rp→1 asymptotically as the higher modes
are added for both the directed and undirected flows. This is
intuitively reasonable, since the true average is the ensemble
average of all modes from all cycles as per equation (9).

The kinetic energy content of POD mode 1 and the
spatially averaged kinetic energy of the ensemble average
〈KE〉 can be compared in table 1 for both the directed and
undirected flows. Mode 1 kinetic energy, KE1, was computed
from the coefficients as in equation (6) and divided by
K = 200 to provide the ensemble-averaged value. Table 1
shows that the energy content of mode 1 is approximately equal
to, but slightly larger than, that of the ensemble-averaged value
for both the directed and undirected flows. The combination of
(a) the flow-pattern equivalency of ϕV

1 and 〈V〉 (nearly unity Rp

in figure 5) and (b) the approximate equivalency of the energy
leads to the conclusion that mode 1 is an excellent estimate of,
but not identical to, the ensemble average, 〈V〉.

3.2. POD and the RANS turbulence

Based on the result of section 3.1, it is reasonable to deduce
that modes 2 → K (=200) contain an estimate of the Reynolds
decomposed turbulence structures and energy, minus the
fraction of the turbulence energy contained in mode 1 (recall
that mode 1 has slightly more energy than the ensemble
average). Using the partitioning of energy content as a first
measure, the near-equivalency of the turbulence energy and
the sum of the energy in modes 2→K is demonstrated in
table 1, which shows that the kinetic energy of the RANS
turbulence, KErms, is approximately equal to that of modes
2 → M, KE2–200/K.

Performing the POD after subtracting the ensemble
average from the instantaneous velocity distributions
(snapshots) will, by definition, contain only the RANS
turbulence. The POD modes show flow pattern components
and the turbulence energy, but the ensemble-averaged velocity,
as computed with equation (9), must be identically zero. Subtle
differences in the turbulence extracted from POD results with
and without first subtracting the ensemble average are noted
in a comparison of the 199 POD modes (2 → 200) from POD
of the full velocity fields with the 200 POD modes of V–〈V〉.

If the ensemble average was identical to mode 1, one
would expect the ϕV−〈V 〉

m and ϕV
m+1 to have identical flow

patterns. Figures 7 and 8, which plot the lowest order basis
functions with and without subtracting the average for both the
directed and undirected flows, show this is not true. Though
close in appearance, they are not identically equivalent for
either the directed or undirected flows. The differences are
expected for three reasons: (i) 〈V〉 is similar but not identical
in structure to mode 1, (ii) the energy and patterns of the
coherent structures are redistributed according to energy and
by the requirements to reconstruct the original snapshots (cf
section 2.2), and (iii) coherent structures of the turbulence
that are not identical from cycle-to-cycle are separated into
200 (instead of 199), which will be shown later to produce a
different energy spectrum.

A visual comparison of the patterns in all modes is
qualitative and exhausting, and the use of the relevance index

Table 1. Energy comparison of Reynolds decomposition and POD with and without subtracting the ensemble average.

Directed KE % 〈V〉 % rms Undirected KE % 〈V〉 % rms

Reynolds 〈KE〉 1896 000 100 81 300 100
decomp. KErms 110 353 100 120 319 100

POD of original KEtotal/K 2006 000 201 600
velocity KE1/K 1898 000 100.1 87 800 108.0

KE2/K 4 200 8500
KE2–200/K 108 000 98 113 800 95
ke1 0.95 0.44

POD after subtracting KEtotal/K 110 354 100 120 320 100
the ensemble average KE1/K 6 000 10 400

ke1 0.054 0.086

9
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(a) (b)

Figure 7. Basis functions for POD of the directed flow (a) without subtracting the ensemble average, V, and (b) after subtracting the
ensemble average, V−〈V〉.

is helpful for a quantitative comparison. Figure 9 quantifies
the differences between the patterns of modes ϕ

V−〈V 〉
1→4 and

ϕV
1→15. Note that the absolute value of Rp is plotted because

the variations between ± 1 otherwise obscure the fractional
values; the importance here is the equivalence of the mode
patterns, and not the allocation of the signs of the coefficients.
There are distinctive differences between the directed and
undirected flows in ϕV−〈V 〉

m = ϕV
m with little correlation with

adjacent modes, i.e. the mode patterns have simply been
shifted to higher modes. However, the modes obtained after
subtracting the average for the undirected flow show some
correlation with adjacent modes; thus, the coherent structures
present in the original velocity snapshots have been distributed
differently between the POD modes. It is not obvious that
there is physical significance to be attached to the results in
figure 9. The only definitive point is that the coherent structures

associated with the turbulence, with and without subtracting
the average, are decomposed into different basis functions. The
fact that the patterns are not identical (|Rp|�=1) is reasonable
since the averages and mode 1 are not identical either. This
demonstrates that even with real flow data, individual basis
functions should not be interpreted as velocity structures;
rather flow structures require reconstruction from potentially
many modes.

As one would expect from energy conservation,
table 1 shows that the KEtotal/K of V–〈V〉 is nearly equal to
the energy of the Reynolds turbulence KErms. Also, KE1 of
V–〈V〉 is less than 10% of KEtotal suggesting that many modes
are required to reconstruct the most energetic structures of the
Reynolds turbulence. Often, relative energy spectra, computed
using equations (6) and (7), and shown here in figures 10(a)
and (b), are used in discussions of POD results. The absolute
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(a) (b)

Figure 8. Basis functions for POD of the undirected flow (a) without subtracting the ensemble average and (b) after subtracting the
ensemble average.

Figure 9. The relevance indices Rp of ϕm (V–〈V〉) projected onto ϕ1(V)–ϕ15(V) quantify the similarities in the mode patterns of POD with
and without subtracting the ensemble average. Shown are the projections of mode m = 1 →4 of V–〈V〉 onto modes m = 1 →15 of V.

11



Meas. Sci. Technol. 23 (2012) 085302 H Chen et al

(a) (b)

(c) (d)

(e)

Figure 10. Energy-fraction spectra (a) and (b), and cumulative energy (c) and (d) for the directed and undirected engine flows.
(e) Comparison of absolute energy.

energy spectra are included to emphasize what is lost in the
normalization; specifically, there is a great difference in the
total energy between the directed and undirected flows, but the
absolute energies of the modes greater than M = 15 are nearly
the same. The shape of the energy spectrum is quite insensitive
to subtracting the average compared to the differences in the
basis functions (cf figures 7–9). The biggest change is that
for the highly directed flow (where the average is apparent in
every realization), the KE1 is dominant and contains most of
the total energy. As a result, there is just an offset in the energy
fraction, and the absolute energy, KEm, in the higher modes
m > 1 is nearly identical as shown in figure 10(e). In fact, when
the average is subtracted before the POD analysis, there is less

than a factor of 2 difference in the spectra of the absolute energy
between the directed and undirected flows. This agrees with
the analysis of the same data set by Funk et al [17], who have
used traditional Reynolds decomposition and spatial filtering
approaches to quantify differences between the low- and high-
swirl flows. The cumulative energy in figures 10(c) and (d)
shows that prior to subtracting the average, the directed-flow
mode 1 contains well over 90% of the energy, where as the
undirected flow requires over 75 modes to capture 90% of
KEtot. In summary, figure 10 provides two important results.
Firstly, the spectra are relatively insensitive to changes in the
flow. Secondly, in contrast to the directed flow the mode energy
of the undirected flow is less than 1% after only 20 modes,
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(a)

(c)

(b)

(d)

Figure 11. Coefficient PDFs for modes based on POD of V, i.e. without subtraction of the ensemble average.

but requires over 100 modes to achieve 90% of the Reynolds
turbulence energy (cumulative energy fraction = 1 for
V–〈V〉).

3.3. Arguments for not subtracting the mean before
performing POD

The previous two sections addressed the differences in POD
results when either subtracting the ensemble mean or not
before the decomposition is performed. In this section, the
analysis of the two engine flows will be used to illustrate why
it is useful, if not essential, to not subtract the average in some
cases before performing POD.

Figure 11 shows the PDFs of the coefficients c(k)
m for four

modes of the POD of the original velocity fields from both
engine operating conditions. In figure 11(a), the coefficients
of mode 1 for directed and undirected flows are negative
because in both cases ϕ1 rotates opposite to the average flow
direction (cf figure 5). The directed-flow PDF shows that the
coefficients for mode 1 are always considerably larger than
those of higher modes and that mode 1 therefore dominates in
all cycles. In contrast, the values of the undirected-flow mode
1 coefficients overlap with those of higher modes, and in fact
the undirected flow has some cycles with near-zero coefficients
for mode 1. The PDFs of c1 quantify what was determined by
visual inspection in the previous work of Reuss [2] in that
(1) the ensemble average is always present in the directed
flow and (2) though the undirected flow showed large-scale
swirl structures in many cycles, they never looked like the
ensemble average, and in some cases were not present at all.
This demonstrates a benefit of performing the POD without

subtracting the ensemble average: the coefficients of mode 1
reveal the extent to which the mean flow is present and it’s
cycle-to-cycle variability.

When applied to V–〈V〉, the POD creates modes with flow
patterns (basis functions) of the RANS turbulence, which must
average to zero at every point in the distribution according
to equation (9). As expected [20], the average coefficients,
cV−〈V 〉K

m , are all effectively zero (10−10 → 10−15) for all modes
of both flows; residual values are attributed to numerical
inaccuracies and rounding errors in the computations. For POD
of V, the average coefficients,

〈
cV

m

〉K
, for m >1 are near, but not

identically, zero as indicated by the PDFs in figure 11. The
non-zero values of

〈
cV

m

〉K
reflect the difference between mode

1 and the ensemble average of the original flow fields. This
is also found in the overall energy budget as listed in table 1.
The non-zero mean of the coefficients and their PDFs contain
information that can assist in conditional sampling of data
sets to identify cycles with unusual conditions, e.g. leading to
engine misfires [21].

4. Conclusions

A set of synthetically created flow fields was used to analyze
the basic properties of POD mode structures and conclusions
that can be obtained from those. The synthetic velocity
distributions demonstrated that every structure from every
cycle is superimposed in every basis function; the modes do
not separate individual structures. A structure is apparent in
a single mode only if it has very high energy in a single
snapshot, or the structure is identical (shape, location, and
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orientation) in many cycles so that the ensemble sum of their
energy is high. Any translation or change in orientation (of
asymmetric or shearing) structures will distribute the flow
energy to other modes. Flow patterns observed in a mode do
not necessarily correspond to physical flow structures; those
emerge in reconstructed flow fields using a sufficient number
of modes.

Experimental data from two optical engine experiments
with highly directed and undirected engine flows were used to
demonstrate that POD without first subtracting the ensemble
average produces a mode 1 energy and flow pattern that are
nearly identical to those of the ensemble mean. This was true
for both the highly directed flow where the ensemble-averaged
flow is apparent in every cycle and in the undirected flow
where the ensemble-averaged flow pattern is never observed
in a single cycle. This conclusion was based on the fact that
both the flow pattern (relevance index, Rp) and energy of
mode 1 were nearly identical to the ensemble average. The
modes of the POD computed from the original flow fields V
(without subtracting the ensemble average) were compared
to POD modes of V–〈V〉, which is by definition POD of
the RANS turbulence; modes 2 → M of POD of V contain
the RANS turbulence based on energy content and Rp, the
mode basis functions (flow patterns); the basis functions were
nearly identical for the directed flow (merely shifted one mode
number), whereas the patterns were distributed to adjacent
modes for the undirected flow. It is concluded that POD of
V is more useful than V–〈V〉 since it is possible to quantify
the extent to which the individual cycles are similar to the
ensemble average, yet contains the mode structure of the
RANS turbulence.

Based on comparisons of the directed versus undirected
flows here, it is observed that the POD energy spectra of the
RANS turbulence are insensitive metrics for comparison of
even two radically different flows and that POD of the full
velocity fields is more useful in this case.
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