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Abstract Previous work demonstrated that the occasional

misfired and partially burned cycles (MF) in a stratified-

charge, spark-ignited direct injection engine always

achieved an early flame kernel, but failed to reach and

inflame the fuel in the bottom of the piston bowl. This

conclusion was derived from intra-cycle crank angle

resolved velocity and fuel concentration images that were

recorded simultaneously using high-speed particle image

velocimetry and planar laser-induced fluorescence. In this

study, both ensemble average analysis, conditionally sam-

pled on either MF or Well Burned (WB) cycles and proper

orthogonal decomposition (POD) are applied separately to

the velocity and fuel distributions. POD of the velocity and

fuel distributions near the spark plug were performed, and

the mode energy and structure of the modes are compared.

This analysis is used to assess the similarity and differences

between the MF and the WB cycles and to identify physical

insight gained by POD. The POD modes were determined

from the combined set of 200 WB and 37 MF cycles to

create two sets of 237 orthogonal modes, one set for the

velocity, V, and one for the equivalence ratio, e. Then,

conditionally sampled averages of the POD coefficients

could be used to quantify the extent to which each mode

contributed to the MFs. Also, the probability density

functions of the coefficients quantified the cyclic variability

of each mode’s contribution. The application of proper

orthogonal decomposition to velocity and equivalence ratio

images was useful in identifying and analyzing the differ-

ences in flow and mixture conditions at the time of spark

between well-burning and misfiring cycles. However, POD

results alone were not sufficient to identify which of the

cycles were misfiring cycles, and additional information

was required for conditional sampling.

1 Introduction

Spray-guided spark-ignited direct injection (SG-SIDI)

engines offer improved fuel economy by reducing pumping

losses, which is realized by controlling the fuel that is

injected into the cylinder rather than throttling the inlet

mixture (Zhao et al. 1999). In order to create the ignitable

mixture near the spark plug, the fuel spray is targeted at the

spark plug for SG-SIDI engines. However, the close

proximity of fuel spray and spark plug can create unfa-

vorable flow and mixture conditions, which can lead to

ignition failures (misfires) and partial burns (Fansler et al.

2008). Recently, the development of high-speed imaging

diagnostics, which is also capable of simultaneously mea-

suring velocity field and fuel concentration at crank angle

resolution, has led to a better understanding of turbulent

flow and fuel/air mixing and their role on ignition stability

(Fajardo et al. 2006; Peterson et al. 2011; Peterson and Sick

2009; Sick et al. 2010a, b). Peterson et al. (2011) measured

the velocity and equivalence ratio near the spark plug of an

SG-SIDI engine idle operating condition where rare mis-

fires and partial burns occurred. Results showed that the

conditions during misfired and partially burned cycles were

within the range seen for successful combustion. Further

analysis showed that an ignition kernel was always formed,

but that the equivalence ratio distribution was insufficient
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for sustaining the flame. The leaning of the fuel path

between spark plug and bottom of the bowl leads to partial

burns or in extreme case, a misfire.

The present study provides further analysis of the data

from Peterson et al. (Peterson et al. 2011), using two

approaches to identify the causes which led to the poor

mixture distributions. First, a more traditional approach,

the velocity and equivalence ratio distributions are condi-

tionally sampled to compute the mean of the well-burned

cycles for comparison with the mean of the cycles, which

misfired or partially burned. The second analysis employs

the proper orthogonal decomposition, POD. The POD

technique was introduced to turbulent flow by Lumley

(Lumley 1967) as an objective means to extract coherent

structures from a database of velocity fields. The goal of

this analysis is to determine whether POD of the equiva-

lence ratio and flow can provide more physical information

than the traditional statistical analysis toward determining

the causes of the unsuccessful fuel distributions.

2 Background

2.1 Summary of misfire and partial burn measurements

from previous study

The data for this study are measurements made and fully

described by Peterson et al. (Peterson et al. 2011). An SG-

SIDI engine was operated at low-load 800-rpm idle con-

dition. Optimal fuel injection timing was used with spark

retarded one crank angle degree from optimum to produce

rare misfired and partially burned cycles. Thirty-seven

misfire and partially burned cycles of 4,524 total cycles

were recorded during 13 different 348-cycle tests. The

original study defined misfires as cycles where the indi-

cated mean effective pressure (IMEP) was below zero and

partially burns as cycles with positive IMEP, but a mass

burned fraction of less than 0.5. For simplification of the

discussion, we refer to all of these failing cycles as misfires

(MF) and well-burned cycles are denoted WB.

The velocity and equivalence ratio distributions were

measured near the spark plug using high-speed simulta-

neous particle image velocimetry (PIV) and planar laser-

induced fluorescence (PLIF). The measurements were

recorded simultaneously at each crank angle degree, during

each injection-, spark-, and combustion-event, and for each

consecutive cycle. Figure 1 shows Mie scattering images

(upper row) of a well-burning cycle for five crank angles

before ignition, as well as the superimposed velocity fields

and equivalence ratio distributions for these five crank

angles and three more images for crank angles after igni-

tion. The crank angle scale is defined with CA = 0� at top

dead center exhaust. The PIV and LIF laser sheets bisected

the plane that included the fuel injector, the spark-plug gap,

and the one of eight spray plumes that was targeted directly

at the spark gap. The gas-phase flow momentum at the

spark plug during and after the injection event is dominated

by momentum transport from the liquid-spray and, thus,

convected the spark plasma, the ignition kernel, and the

partially premixed flame to the lower right of the pictures.

As shown by the Mie scattering images, the velocity and

equivalence ratio distributions prior to 330� CA are dom-

inated by the presence of the liquid spray. After 330� CA,

the distributions have no measurements in the burned gases

(regions bounded by the dotted line), due to the depletion

of both the PIV oil-droplets and LIF biacetyl tracer by the

flame (cf. Fig. 1). Thus, the analysis in this study focuses

on CAD = 330�, which is the state of flow and fuel at the

20 mm

CAD=323o CAD=326o CAD=328oCAD=324o CAD=330o

Spark plug Spray plumes

CAD=334o CAD=342oCAD=339o
Flame kernel

Fig. 1 Crank angle resolved

Mie scattering images (upper
row) and overlapped velocity

fields and equivalence ratio

image sequences from Peterson

et al. (2011) (Fuel injection

timing: 323�–328�ATDCExh,

spark timing: 330�ATDCExh.

Fuel equivalence ratio was

measured only on right side of

the combustion chamber)
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beginning of the spark discharge. The gas-phase velocity

measurements were taken over most of the field of view,

but were unavailable where and when the spray was

present. The LIF laser power was sufficient to illuminate

only half the field of view and therefore was placed on the

right half, where both the spark plasma and flame were

convected. Figure 2a, b show the subregions of the velocity

and equivalence ratio at CAD = 330�, respectively, which

were analyzed in this study. These regions were defined to

avoid image background features that would inject non-

physical features into the POD analysis, which will be

discussed in the next section.

The images in Fig. 1 show a well-burned cycle, where

the early flame kernel (white area with red outline) at

CAD = 334�, develops and propagates into the fuel cloud

at the bottom of the piston bowl by CAD = 342�. Analysis

of individual cycle PIV and PLIF images in Peterson et al.

(Peterson et al. 2011) revealed that misfired cycles occur

under lean mixtures and low velocities at the spark plug,

but still within the range of values for the well-burned

cycles. There was no correlation between the misfires and

the spark-discharge energy, power, or duration. Observa-

tions of the fuel distribution and flame areas for the partial

burns and misfires showed that an early flame kernel was

always formed, but failed to develop sufficiently to prop-

agate to the fuel in the bowl. A flame kernel arriving late

within the piston bowl found significantly leaner condi-

tions, and the mixture was not fully consumed leading to a

partial burn. In misfire cycles, the mixture in the mea-

surement plane was significantly leaner surrounding the

flame kernel, which disappeared shortly after the spark

discharge. That study concluded that the partial burns and

misfires are not the result of failed ignition, but failure

occurs during the flame propagation process.

2.2 Proper orthogonal decomposition analysis

Lumley proposed to use the POD technique to objectively

extract coherent structures from turbulent flows (Lumley

1967). In engines, POD has been used for the analysis of

cyclic variability of PIV measurements (Baby et al. 2002;

Roudnitzky et al. 2006), proposed for low-order modeling

of flows (Holmes et al. 1997), and used for comparison of

flow measurements with LES computations (Liu and Ha-

worth 2011; Sick et al. 2010b). It has also been used for the

analysis of scalar and flame structures (Bizon et al. 2009,

2010). In this study, we apply phase-dependent POD to

both the velocity and equivalence ratio measurements

taken at a fixed crank angle degree, in an attempt to assess

if it can provide physical understanding beyond that of

ensemble averaging. The mathematical and conceptual

principles of POD have been described at length in the

literature (Chatterjee 2000; Cordier and Bergmann 2003;

Holmes et al. 1996). Here, we describe only the properties

of the POD decomposition that are salient to the analysis as

we have applied it to the misfire study.

In this study, we analyze the two-dimensional velocity,

(u, v), distribution

V ðkÞ ¼ ðu; vÞðkÞi;j ð1Þ

and the equivalence ratio distribution

eðkÞ ¼ ðeÞðkÞi;j ð2Þ

measured on a two-dimensional grid, (i, j), during each

cycle, k, at one crank angle, for a total of K cycles (snap-

shots). The following description of the POD in Eqs. 3

through 9 is cast in terms of velocity. However, the

equations apply identically to the equivalence ratio by

replacing the two-dimensional velocity V with the one-

dimensional scalar value e.
Conceptually, the POD decomposes the original func-

tion V(k) into a linear combination of M spatial basis

functions (POD modes, um) multiplied with the corre-

sponding coefficients cm
(k):

V ðkÞ ¼
XM

m¼1

cðkÞm um ð3Þ

where um are M two-dimensional (i 9 j) normalized vector

distributions. When the method of snapshots is used the

number of created modes is equal to the number of cycles

(snapshots) K (Sirovich 1987). Each basis function is

orthogonal to all others and normalized (unity), so that cm
(k)

determines the contribution of mode m to the reconstruc-

tion of the velocity V(k). The value of cm
(k) is determined by

projecting V(k) onto the mth mode, um. Thus, cm
(k) is an

M 9 K coefficient matrix where there is one coefficient for

each mode in each cycle. The values of cm
(k) can be positive

or negative.

The procedures of determining the orthonormal POD

basis functions um are detailed in Holmes et al. (1996),

Chatterjee (2000), and Cordier and Bergmann (2003) and

Spark plugInjector

Piston with Bowl

Spray Plumes

Spark plugInjector

Piston with Bowl

Spray Plumes

(a) (b)

Fig. 2 Analysis fields of view in this study for (a) the velocity and

(b) the equivalence ratio distributions indicated by the red dashed
lines
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have been implemented for this work into a Matlab code to

minimize the following function.

XK

k¼1

V ðkÞ �
XM

m¼1

cðkÞm um

�����

�����

2

! min ð4Þ

subject to ui;uj

� �
¼ dij ¼

1 if i ¼ j

0 if i 6¼ j

(
where �k k

denotes the L2 norm. Because of the use of the L2 norm,

it is natural to apply this to velocity distributions where

(cm
(k))2 represents the kinetic energy the mth mode

contributes in the kth cycle, though this physical

interpretation is not appropriate in most cases where

POD is used (Chatterjee 2000) and certainly will also not

apply to our analysis of the equivalence ratio fields. Based

on Eq. 3, the velocity field from a given cycle k can be

reconstructed by summing all of the modes multiplied by

their respective coefficient for that cycle. Likewise, the

sum of the energy from all of the cycles captured by the

mth mode is

em ¼
1

2

XK

k¼1

ðcðkÞm Þ
2
: ð5Þ

and the energy fraction of the mth mode is given by

Em ¼ em

.XM

m¼1

em ð6Þ

The modes are ordered with decreasing corresponding

energy such that the mode with m = 1 is the one with the

highest energy.

The ensemble average of Eq. 3 will yield the averaged

velocity fields as

Vh i ¼ 1

K

XK

k¼1

VðkÞ ¼
XM

m¼1

1

K

XK

k¼1

cðkÞm

" #
um ¼

XM

m¼1

cmh iKum

ð7Þ

and the contribution of each mode to the ensemble mean

can be computed as

Vh im¼ cmh iKum ð8Þ

where the operator cmh iK indicates the ensemble average

over all cycles for a given coefficient. The exact ensemble

average is achieved when all modes are used and a lower-

order estimate is achieved with a truncated set, e.g., for

low-order modeling (Holmes et al. 1996, 1997).

POD is used frequently to identify coherent structures in

measured data. Coherent structures are not necessarily

completely captured by individual modes. However, when

there are repeatable high-energy structures occurring in the

same region of every cycle in an engine, such as in a pent-

roof engine with symmetric intake ports, it is possible to

capture most of the energy in a single mode with POD

(Voisine et al. 2011). In this case, the coefficients capture the

cycle-to-cycle variability of the energy in that single mode,

which is estimating the structure. Liu and Haworth (Liu and

Haworth 2011) applied POD for comparing computed and

measured flow structures in an engine-like flow. The

application of POD in this study is in the same spirit of these

two studies, where we attempt to identify flow and equiva-

lence ratio structures in the misfired and partially burned

cycles that are not present in the well-burned cycles and

could help to explain the reason for misfires.

Visual comparison of the modes, though useful, is both

laborious and qualitative. Here, we use the ‘‘relevance

index Rp’’ (Liu and Haworth 2011) obtained by projecting

one basis function ua onto another basis function ub, to

quantitatively measure the degree to which two basis

functions from different samples are similar or dissimilar.

Rp ¼
ðua;ubÞ
uak k � ubk k ð9Þ

The numerator denotes the inner product of two basis

functions, and �k k denotes the L2 norm. The numerical

value of the relevance index varies from -1 to 1. Rp = 1 if

the two basis functions are identical, Rp = -1 means two

basis functions are exactly opposite, Rp = 0 if two basis

functions are orthogonal. Of course, Eq. 9 can be used to

quantify the similarity of any two velocity distributions as

originally presented by Liu and Haworth (2011). Here, it is

used to compare the mean velocity distributions with POD

reconstructed distributions, as well as POD modes

conditionally sampled on the WB versus MF cycles.

The above description has been in the context of the

velocity where the minimization of Eq. 4 provides an

intuitive energy-based decomposition. However, POD

analysis has also been applied to image intensity for pattern

recognition. For example, Sirovich et al. (Sirovich and

Kirby 1987) used it for the ‘‘Rogue Gallery Problem’’,

where it was utilized to identify one face out of a set of 115

faces. Thus, it is natural to apply this to flame features

(Bizon et al. 2009, 2010) and other scalars measured in

engines in a completely analogous way. In the present

study, for the application to equivalence ratio distributions,

the physical relevance of e2 is not as intuitive as the kinetic

energy derived from the decomposition of velocity fields

but nonetheless the POD modes are generated using the L2

norm in Eq. 4. Thus, the equivalence ratio, e, was substi-

tuted for V in Eqs. 3–8, and the modes were ordered by e2.

3 Results and discussions

The focus of this study is the analysis of flow and mixture

conditions at the onset of spark, which were found before
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as critical for successful ignition. First, we investigated the

difference between WB and MF cycles by analyzing the

conditionally sampled ensemble mean equivalence ratio

and velocity fields. Then, the POD technique was utilized

to identify additional physical information such as coherent

flow features that contribute to the MFs.

The velocity and equivalence ratio distributions for over

4,000 cycles were recorded by Peterson et al. (Peterson

et al. 2011). Those were all well-burning cycles with the

exception of the 37 MF cycles analyzed here. However, we

performed the ensemble mean and POD analysis for only

200 WB cycles for comparison with the 37 MF cycles to

keep the computational effort at a level manageable with

Matlab routines. We investigated the relevance of sample

size and found that this was sufficient for an estimate of the

mean and is also comparable with sample sizes used for

POD analysis reported in the literature.

3.1 Conditionally sampled ensemble mean analysis

Figure 3a, b show the ensemble mean equivalence ratio

conditionally sampled on the 200 WB cycles and 37 MF

cycles, respectively. No differences are discernable in a

visual comparison. However, their difference shown in

Fig. 3c reveals that the well-burned cycles have locally

richer regions around spark plug and leaner regions just

downstream of the spark plug. The effect of sample size

was investigated to show that these differences in Fig. 3c

are not just statistical fluctuations. The ensemble mean of

200 WB cycles was subtracted from six ensemble averages

of randomly selected 37-cycle WB samples. One of the

subsamples with the largest differences is shown in Fig. 3d

and illustrates the statistical validity of the sampling pro-

cedure. The maximum difference shown in Fig. 3c is over

five times larger than those in the WB subsamples in

Fig. 3d, strongly suggesting that the conditional samples

indeed have different fuel distributions.

Figure 4 shows the same subtraction results for the

velocity fields. Again, the subtractions between 200 WB

cycles and subsamples do not show significant differences,

indicating the effect of subsampling is small compared

with the differences between the WB and the MF. There

are two regions with vortical flow structures that only

appear in the difference between WB and MF cycles.

Those are highlighted in Fig. 4 by dotted and dashed cir-

cles. Most prominently, the difference vectors at the fuel

spray tip (highlighted by the solid circle in Fig. 4a) have

the opposite direction as the velocities caused by fuel

spray. This demonstrates that the entrained gas velocity at

the end of the liquid spray event (in the wake of the liquid

jet) of the MF cycles is lower.

3.2 POD analysis

A POD analysis was performed to gain more physical

insight into the differences between WB and MF cycles

and also to examine whether a POD analysis could be used

to identify MF cycles without prior knowledge that allows

conditional sampling. In principle, conditional sampling

could be performed at two stages of the POD analysis.

First, the POD is performed on WB and MF data subsets

separately, and then the modes and coefficients are com-

pared. Second, POD is performed on the entire data set, and

then the coefficients are conditionally sampled and ana-

lyzed. It is not a priori obvious which approach is more

useful. Thus, both analysis approaches were taken, and

results are reported here to illustrate that the second

approach is more appropriate. Analyses of the equivalence

ratio and velocity distributions are presented separately,

followed by a comparison with the ensemble mean

analysis.

3.2.1 POD of the equivalence ratio distributions, e

The first POD analysis was performed on the equivalence

ratio distributions, applied separately to the 200 WB cycles

and the 37 MF cycles, thus creating 200 and 37 modes,

respectively. It is implicit here that the 200 samples WB

cycles are sufficient to capture the POD mode structures of

the larger 4487 WB sample, which is consistent with

samples sizes used in the literature, and large compared

with the 37 available MF cycles produced by the

Fig. 3 Ensemble average

equivalence ratio comparison,

beginning of spark,

CAD = 330�ATDCExh. �h i
denotes the ensemble average.

Red regions in c and d indicate

leaner regions in the 200-cycle

ensemble-averaged WB case;

blue regions are richer
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experiments (refer to Sect. 2.1). To assess the effect of

limited sample size, six subsamples of 37 randomly

selected WB cycles were selected from the 200 WB cycles

and analyzed with POD separately. Figure 5a shows that

the six WB subsamples have essentially the same POD e2

spectra, but that mode 2 of the MF cycles is significantly

higher in the e2 fraction. This difference between the MF

and WB e2 fractions in Fig. 5a is significant only if the

basis functions for the different spectra are the same. Since

the basis functions are orthonormal with respect to the

basis of each sample but not with respect to the basis

functions of the other samples, it is necessary to quantify

the equivalence of the mode patterns of the WB versus MF

samples. Rp defined in Eq. 9 was employed to quantita-

tively measure the degree to which two modes from dif-

ferent samples are equivalent. Figure 5b shows six modes

from one of the WB subsamples projected onto the first 20

of 200 modes generated from all 200 WB cycles. With the

exception of Rp for mode 1, which is nearly equal to the

mean, Rp is significantly less than unity for modes with the

same sequence rank, which means that POD of the WB

subsamples created modes that are significantly different

from those for the full 200 WB cycle sample. This result

could not be seen in the energy spectra that showed no

significant difference between subsamples (Fig. 5a). Fur-

ther, mode switching has occurred between the WB sub-

sample and the full 200 WB sample. That is the mode order

is based on e2 as shown in the spectra of Fig. 5a, but the

maximum Rp of higher modes has switched order. This is

particularly prominent for mode 9 of the subsample that

correlates very well with mode 8 of the 200 WB samples.

Modes 3 and 4 have not only switched order, but now

correlate with some extend with adjacent modes. For

completeness, Fig. 5c shows the maximum absolute value

of Rp obtained by projecting modes of two of the 37 WB

subsample modes and the MF modes onto the modes

generated by all 200 WB cycles; this demonstrates that the

modes of the subsamples do not correlate well with any of

the higher modes of the full 200 WB cycles.

Taken together, Fig. 5a–c show two important results.

First, the six WB subsamples have very similar mode

spectra and mode correlations. However, Rp rapidly falls

from unity (Rp = 1 for identical modes), which means that

POD of the WB subsamples created modes that are sig-

nificantly different from the full 200 WB cycle sample.

Second, mode 2 of the MFs contributes more energy, but

since Rp of the MFs shown in Fig. 5c is lower than that of

the WB cycle samples, the coefficients (amplitude of the

equivalence ratio contribution) of mode 2 of the WB cycles

cannot be compared directly to the coefficients of mode 2

of the MF cycles. These two results illustrate an important

property of the POD analysis. Namely that it is necessary to

generate the POD modes from all 237 cycles (WB ? MF)

to guarantee that the same modes are generated for

Fig. 4 The difference between

conditionally sampled ensemble

average velocity fields at the

beginning of spark,

CAD = 330�ATDCExh, shows

the residual difference between

WB and MF cycles. Flow

structures in the highlighted

regions are discussed in

Sect. 3.3
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meaningful quantitative comparison of the energy con-

tained in the modes (i.e., comparison of POD coefficients).

The second POD analysis was applied to the equiva-

lence ratio distributions from the 237 WB and MF cycles

combined, thus producing a single set of modes and a

single coefficient matrix. Then, conditional sampling of the

matrix coefficients was performed. Figure 6 compares the

POD mode spectrum of the e2 fraction and the cumulative

e2 between the WB and MF cycles; only the first 20 of the

237 POD modes are shown. These values of e2 represent

the summation of, c
ðkÞ
m

� �2

(cf. Eq. 5), from all cycles (200

WB cycles, 37 MF cycles, and 237 WB ? MF cycles,

respectively) for each corresponding mode. Thus, the very

high e2 for m = 1 of the WB cycles demonstrates that the

equivalence ratio distribution is very repeatable. However,

the considerably lower value for m = 1 of the MF cycles

means that the higher modes contribute more to the con-

ditionally averaged distribution. Nonetheless, the first five

modes captured *95% of the total e2 for all subsamples as

shown in Fig. 6.

According to Eq. 7, the summation over all 237 modes

multiplied with their respective coefficients will create the

ensemble mean exactly. A low-order estimate is achieved

by the first few modes (Fogleman et al. 2004, Holmes et al.

1997) and it was suggested that for this purpose two criteria

be used. First, the cumulative energy, here e2, should be at

least 90% of the total and second, all modes that contribute

to at least 1% to the total should be included. For the

present case, this includes modes up to m = 5. Figure 7

shows the reconstructed average equivalence ratio distri-

butions that were obtained by conditionally sampling the

coefficients before averaging them. The major difference

between WB and MF cycles was captured by this low-

order estimate; results agree with observations made from

the ensemble-averaged images shown in Fig. 3 in that the

equivalence ratio values are lower for MF cycles down-

stream of the spark plug.
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Fig. 5 a POD e2 spectra for six

WB subsamples and the MF

cycles; b the relevance index for

six modes from a WB

subsample projected onto the

first 20 modes from all 200 WB

cycles; c maximum correlation

between each mode from three

subsamples, two randomly

selected 37-cycle WB

subsamples and 37 MF cycles,

projected onto all modes of the

200 WB cycles. CA = 330�

Fig. 6 POD mode spectrum of

the e2 fraction (logarithmic

scale) and cumulative e2

fraction (linear scale) for the

first 20 POD modes of

237-cycle sample. The fraction

is computed from the

coefficients for WB ? MF,

WB, and MF, the basis

functions for all three cases are

same
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The difference between WB and MF cycles was cap-

tured with the contribution from a small number of modes

only. The question arises whether an examination of the

coefficients could reveal differences between WB and MF

cycles without the need to invoke criteria used for the

conditional sampling, i.e., IMEP in our case. Histograms of

the coefficients for the first few modes are shown in Fig. 8.

While there is a distinct shift for modes 2, 4, and 6, the

distributions are not clearly separated and therefore could

not be used to identify MF cycles from the POD analysis

alone. Note that the 37-cycle sample size is too small to

expect a smooth PDF; Fig. 8 serves only to quantify the

range and cycle-to-cycle variability of the coefficients.

3.2.2 POD of the velocity distributions

In the same manner, as for the POD analysis of the

equivalence ratio images, it was found that the POD

Fig. 7 POD analysis of

equivalence ratio distribution

from the decomposition of 237

WB and MF cycles combined

and subsequent conditional

sampling of the coefficients.

The upper images show the

contribution from mode 1. The

lower distributions were

obtained from the sum of modes

2–5 and clearly illustrate that

their addition to the m = 1

fields will result in a leaner

equivalence ratio for misfiring

cycles downstream of the spark

plug; compare with Fig. 3
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function (PDF) of POD

coefficients for Equivalence

Ratio for WB and MF cycles.

The coefficients were obtained

from decomposition of all 237

WB and MF cycles
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analysis of the velocity fields had to be performed on the

entire data set. Then, conditional sampling of the coeffi-

cients and a consistent set of basis functions would better

highlight the differences between WB and MF cycles. The

square of the coefficients provides the kinetic energy

according to Eqs. 5 and 6. Figure 9 shows the spectrum of

the kinetic energy fraction and cumulative energy captured

by the leading 20 POD modes for the WB ? MF, WB, and

MF cycles. Here, the energy fractions are based on the total

energy of the respective conditionally sampled data set. As

with the equivalence ratio analysis shown in Fig. 6, mode 1

had a higher energy fraction for the WB cycles than for MF

cycles. It is also noteworthy that for the velocity data, the

first 20 POD modes are required to capture approximately

90% of the total kinetic energy, compared with the

equivalence ratio where the first mode alone captured 90%

of e2 for the WB cycles. The same trend is followed for the

other subsamples. As the first mode of the MF cycles has

significantly lower energy than that of the WB cycles,

many more of the higher-order modes are required to

recover the same fraction of the total kinetic energy.

According to the energy spectrum in Fig. 9, mode 4 in

particular and modes 7 through 15 are more dominant in

the MF cycles than the WB cycles.

The PDFs of the coefficients for the first four modes are

shown in Fig. 10, illustrating the substantial cyclic vari-

ability of the coefficients. It is also evident that modes 1

and 4 have reversed roles between WB and MF cycles.

The conditionally sampled averaged flow fields were

reconstructed, again employing the criteria that a lower-

order estimate contain 90% of the total and neglect no

modes with more than 1%. In contrast to the equivalence

ratio distribution where 5 modes were sufficient for this,

the velocity field reconstruction required the use of the first

twenty modes. Figure 11 shows the reconstructed condi-

tionally averaged flow fields and illustrates that for WB

cycles the first mode captured the structure of the flow field

whereas the reconstruction of the averaged MF cycle flow

field shows the substantial modulation via contributions

from modes 2–20. The point to be made here is that the

higher modes are not necessarily describing new or dif-

ferent coherent structures; in this case, they simply mod-

ulate the very repeatable mode 1 structures. Summed

together, the higher-order modes then quantify the total

Fig. 9 Kinetic energy fraction

(logarithmic scale) and

cumulative energy fraction

(linear scale) for the first 20

POD modes. The coefficients

were obtained from a single

decomposition of all 237 WB

and MF cycles combined, but

then were conditionally sampled

Fig. 10 Probability density

function (PDF) of POD

coefficients for velocity fields of

WB and MF cycles. The

coefficients were obtained from

decomposition of all 237 WB

and MF cycles
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modulation of the first mode. The cycle-to-cycle distribu-

tion of this modulation is revealed by the PDFs of Fig. 10

where the coefficients for MF mode 1 are smaller than for

the WB values, but this is largely recaptured by the energy

of MF mode 4.

The energy spectrum in Fig. 9 suggests that there is also

more energy in the MF modes 5 through 15 compared with

the same modes of the WB cycle modes. A summation

including modes 2 through 20 (Fig. 11 lower right panel)

shows that the resulting averaged flow field provides a

reasonable estimate of the difference of the means (Fig. 4).

This is reasonable, since mode 1 is a good estimate of the

mean (high-energy fraction) and was excluded from the

summation here, effectively subtracting the mean.

3.3 Discussion of ensemble mean versus POD analysis

The main motivation for this study was to determine

whether POD analysis could provide more physical insight

into the causes of the MFs that was not accessible through

ensemble averaging and whether POD could be used to

identify MF cycles without the use of conditional sampling

based on indicated mean effective pressure and mass

burned fraction. Here, conditional sampling was employed

prior to ensemble averaging velocity and equivalence ratio

images to then compare results of the WB cycles versus

those of the MF cycles. Ensemble averaging V or e struc-

tures in a reciprocating engine is ambiguous because it is

unknown if the average distribution exists in every cycle or

if the average is dominated by but a few cycles with large

magnitudes. POD could remove this ambiguity. Recall that

both averaging and POD analyses were performed for

images that were captured downstream and adjacent to the

spark plug at 330 CA, which is at the end of the liquid-

spray event and the beginning of the spark discharge. The

conditionally sampled averages discussed in Sect. 3.1

identified that the MF cycles are leaner and the velocities

lower just downstream of the spark plug.

The contribution of the first POD mode of the equiva-

lence ratio to the conditionally sampled reconstructed

averages is nearly identical for the two samples as indi-

cated by the nearly equal coefficients seen in Fig. 8. Thus,

it is the modulations by the higher modes that create the

differences in the ensemble averages by locally leaning or

enriching the values given by the first mode. Figure 7

demonstrates that the impact of the modulations by modes

2–5 of the MFs is greater in magnitude and opposite in sign

compared with the WB cycles. Inspection of the PDFs of

the POD coefficients in Fig. 8 (conditionally sampled on

WB and MF cycles) shows that the range of values of the

mode 2 coefficients shows some separation between the

WB and MF cycles, and that the MF values are larger.

Almost all mode 2 coefficients for the MF cycles are

positive; in the product with mode 2, this produces an

overall negative contribution to the sum (Eq. 3) and thus,

the addition of mode 2 makes almost every cycle is leaner.

Although lower in magnitude, the same trends are seen for

the PDFs and e distributions of modes 3 and 6. Thus, the

PDFs quantify the cycle-to-cycle variability of the modes.

Also, the higher (lower energy) POD modes retain the

structural information, lost in the Reynolds decomposition

of the turbulence fluctuations.

Fig. 11 POD analysis of

velocity fields from the

decomposition of 237 WB and

MF cycles and subsequent

conditional sampling of the

coefficients. The upper images
show the contribution from

mode 1. The lower distributions

were obtained from the sum of

modes 2–20 and clearly

illustrate that their addition to

the m = 1 field will result in a

lower velocity for misfiring

cycles downstream of the spark

plug; compare with Fig. 4.

Features highlighted by circles

are discussed below
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The velocity distributions drive the changes in equiva-

lence ratio distributions. Three major flow structures were

identified in the ensemble mean distributions of Fig. 4 as

well as the reconstructed flow fields. The energy spectra

shown in Fig. 9 indicate that modes 2–20 in the MF con-

ditionally sampled subset are more important than for the

WB cycles. Indeed, the summation over the contributions

from modes 2–20 has a pronounced effect on the recon-

structed flow field. The dominant structure near the spark

plug is the streaming structure (solid line circle, Fig. 11),

presumed to be the wake (entrained air velocity) behind the

liquid spray.

The vortex near the spark plug (dashed outline, Fig. 11)

is presumed to be a result of the spray entrainment as well.

This entrainment vortex appears in both conditionally

sampled means (Fig. 4), but almost disappears when the

means are subtracted. The POD analysis shows that this

vortical structure exists only in modes 1 and 2 (Fig. 12),

where the basis function rotates clockwise in mode 1 and

counter clockwise in mode 2. In this case, the counter-

rotating vortex in mode 2 is not a new structure, rather

increases and decreases the magnitude of the same struc-

ture but by a small amount. The near-Gaussian PDF dis-

tribution of the WB POD mode 1 coefficients with a range

of ±20 compared with an average value of around 68 for

the mode 1 coefficient reveals a large cycle-to-cycle rota-

tional variation. The MF PDF of mode 2 coefficients shows

a negative bias, which coupled with the counter-rotating

vortex in mode 2, reveals that mode 2 of the MF cycles

tends to increase the energy of the entrainment vortex.

However, the mode 1 coefficient is smaller for MF cycles

(average of 58) so that overall the MF cycles have a weaker

entrainment vortex. The cycle-to-cycle variability of this

entrainment vortical structure is captured by the PDF of

mode 2 but not apparent from the averaging analysis.

The vortical structure indicated by the dotted line (lower

right panel in Fig. 11) is probably not of great importance

to the region downstream of the spark plug and therefore to

the success of ignition, but shows an important principle. It

was not visible in either the WB or MF averages of Fig. 4

because it is superimposed on a spatially large and large-

magnitude streaming structure. It becomes visible when

subtracting the two averages because the streaming struc-

ture is dominant and captured primarily in mode 1 with

little modulation by other modes. Thus, when the two

means are subtracted, the superimposed vortical structure

appears. In the POD analysis, this structure does not

become very apparent until modes 2 through 20 are sum-

med, though recognizable still not as distinct as in the

subtracted means of Fig. 4. This is a case where POD has

revealed a weak structure superimposed on a larger mag-

nitude structure; also, it demonstrates that a single flow

structure may be decomposed into many modes and thus

requires many modes to reconstruct it.

4 Summary and conclusions

The merit of using proper orthogonal decomposition was

explored for the analysis of conditions leading to rare fail-

ure in engine performance. Those conditions were previ-

ously identified in a high-speed imaging study by Peterson

et al. (Peterson et al. 2011) for low-load late injection

operation of a spray-guided direct injection engine. They

used simultaneously acquired sequences of velocity and

equivalence ratio images to identify that flow and mixture

conditions in misfiring and partially burning cycles were

such that an early flame kernel would develop too slowly

and would be convected too slowly to eventually reach the

main fuel cloud. The indicated mean effective pressure that

was determined from in-cylinder pressure measurements

provided information to differentiate globally the failing

cycles (MF) from the well-burning cycles (WB) so that

conditional sampling on the imaging could be performed.

The present study analyzed the potential of using proper

orthogonal decomposition and subsequent conditional

sampling in revealing information that would not be

accessible via conditionally sampled ensemble averaging.

Fig. 12 Flow structures that are relevant to the study of misfires are

composed from contributions in several modes. In particular, the

regions highlighted by the outlines are discussed in the text
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As a baseline, the ensemble-averaged data, conditionally

sampled on the WB and MF cycles, demonstrated clearly

that the mixture was leaner and traveled at lower velocity

in the wake region of the spray at the spark plug at the time

of spark for MF cycles compared with WB cycles. How-

ever, interpretation of ensemble-average data in engines is

often difficult because it is never certain if the observed

structures are present in every cycle or the results of a few

very energetic cycles.

Proper orthogonal decomposition was then performed

on both velocity fields and equivalence ratio distributions.

An initial analysis treating WB and MF data separately

with POD yielded inconclusive results because modes and

coefficients from the two decompositions could not be

directly compared. POD of the combined data set of 200

WB and 37 MF images provided a common basis, i.e., set

of modes, for further analysis that yielded the following

observations.

1. The coefficients of each mode could be conditionally

averaged to quantify the extent to which each mode

contributes to the ensemble average distribution.

2. The PDFs of coefficients reveal the cycle-to-cycle

variation of the structures and the extent of modulation

of the first mode by higher modes.

3. The POD retains structural information on the turbu-

lence fluctuations that is lost in Reynolds averaging.

4. The PDFs of coefficients from WB and MF cycles

overlap, and therefore the identification of MF cycles

solely from POD data is not possible but still requires

additional information such as indicated mean effec-

tive pressure.

For both the velocity and equivalence ratio distributions,

it was shown that the POD extracts the most energetic

structures and modulates these structures (magnitude and,

for velocity, direction) in the higher-order (lower energy)

modes. However, it is crucial to note that the modes do not

necessarily identify a real flow or mixture structure in a

single mode; rather many modes may be necessary to

reconstruct the structure.

Applying this approach to the misfire study data of

Peterson et al. (2011), we conclude the following. The

existence of the streaming structure associated with the

wake of the liquid spray is in the first POD mode and has

high energy in every cycle. This is expected, as the liquid

spray momentum is much larger than that of the in-cylinder

airflow. The modulation of this structure in the MF cycles

occurs at higher order and requires many low-energy

higher-order modes to reconstruct the flow field

(cf. Fig. 11), suggesting significant spatial variation of the

modulations. The POD modes of the equivalence ratio

revealed that all of the lower-order modes contributed to

leaning out of the mode 1 wake structure near the spark

plug, which is the region where the spark-discharge plasma

was convected (Peterson et al. 2011).

In summary, it was demonstrated that the application of

proper orthogonal decomposition to velocity and equiva-

lence ratio images was useful in identifying and analyzing

the differences in flow and mixture conditions at the time

of spark between well-burning and misfiring cycles.

However, POD results alone were not sufficient to identify

which of the cycles were misfiring cycles and additional

information was required for conditional sampling.
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