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" A 1-D engine simulation model that covers entire speed–load operating range is built.
" The engine model is carefully calibrated using experimental data.
" Optimization methodology based on the 1-D engine simulation model is proposed.
" Part load operating variables are automatically optimized using the method.
" Significant fuel economy improvement is obtained after optimized by genetic algorithm.
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An Atkinson cycle engine with geometrical compression ratio (GCR) of 12.5 has been designed by max-
imizing fuel economy at full load operating conditions based on the Artificial Neural Network Method [1].
However, the Atkinson cycle engine generally operates at part load conditions especially in the middle to
high load range. Optimization of the fuel economy for part load is more important in reducing the total
fuel consumption. The Atkinson cycle engine applies the load control strategy that combines the intake
valve closure (IVC) timing and electrically throttling control (ETC), which has an impact to the fuel econ-
omy. Moreover, the exhaust valve opening (EVO) timing, spark angle (SA) and air–fuel-ratio (AFR) also
affect the fuel economy. If calibrating these operating variables over the entire operating range through
experiments, the difficulty and cost will become a big issue. A physical model based optimization scheme
by coupling MATLAB genetic algorithm (GA) and 1-D GT-Power simulation models of the Atkinson cycle
engine are proposed. The GT-Power models were improved to accurately simulate the part load condi-
tions, by calibrating parameters of the combustion and heat transfer sub-models using experimental data
taken at various speed–load points covering the entire operating range. The fuel economy was optimized
based on the part-load calibrated GT-Power models using the Genetic Algorithm. After each speed–load
point was optimized, the control maps for the IVC timings, SA, etc. were obtained. Then these numerically
optimized control maps were input into the engine control unit (ECU) as the initial values of the engine
calibration, which were further experimentally optimized. The experimental results show that the part-
load GT-Power models have sufficient prediction accuracy, with maximal error of 8.5%. After optimized
by GA, the fuel economy was greatly improved over the operating range, with the maximal improvement
up to 7.67%.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

An Atkinson cycle engine (Appendix 1) with geometrical com-
pression ratio of 12.5 has been designed and built [1]. Fuel econ-
omy at widely-open-throttle (WOT) operating conditions in the
speed range from 1000 rpm to 4400 rpm of the Atkinson cycle en-
gine are greatly improved comparing to its baseline Otto cycle en-
gine. The maximum improvement is up to 13% at 2400 rpm.
However, the Atkinson cycle engine mainly works at part load
operating conditions especially in the middle to high load range
when it is used in a hybrid vehicle [2]. In the hybrid system, an
Atkinson cycle engine could always work in the highly efficient
operating conditions at any time through optimum collaborative
control of an engine, a motor, a generator via a power split device
[2–4]. The fuel economy for the Atkinson cycle engine at part load
(not WOT) operating conditions are more important and useful for
practical fuel consumption reduction.

The Atkinson cycle engine applies the load control strategy that
combines the intake valve closure (IVC) timing and electrically
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Nomenclature

me entrained mass of the unburned mixture
qu unburned mixture density at time of spark
Af entrainment surface area at the edge of the flame front
lT characteristic speed related with the turbulent intensity
SL laminar flame speed
mb burned mass
sb characteristic burning time
lM Taylor micro-scale length;
l parametric mass (interpreted as the mass entrained

within the flame region that has yet to burn)
Bm maximum laminar speed
B/ laminar speed roll-off value
/ in-cylinder equivalence ratio
/m equiv. ratio at max. speed
Tu temperature of the unburned gas
Rf mass fraction of the residuals in the unburned zone
A temperature ratio exponent
B pressure ratio exponent
DEM dilution exponent multiplier
m1 flame kernel growth multiplier
m2 turbulent Flame Speed Multiplier
m3 Taylor length scale multiplier

m4 convection multiplier
lT characteristic speed is closely related with in-cylinder

turbulence intensity
�ui mean inlet gas speed
gv volumetric efficiency
Ap piston area
aiv the maximum open area of the inlet valve
�Sp the mean piston speed
_q heat flux
Tw wall temperature
Aw wall surface area in contact with the cylinder gases
B the cylinder bore
hc the heat-transfer coefficient
w average cylinder gas velocity
p average cylinder gas pressure
T average cylinder gas temperature
HRR apparent heat release rate
AFR air–fuel-ratio
ETC electrically throttle control valve
IVC intake valve closure
EVO exhaust valve open
SA spark angle
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throttling control (ETC), whose operating parameters are different
from those of the traditional Otto cycle engine. In order to realize
the Atkinson cycle at partial loads, the late-intake-valve-closing
(LIVC) operation could be adopted to shorten the effective compres-
sion stroke. On the one hand, the LIVC operation may cause a back-
flow of the fresh charge during the early compression stroke if it is
too late. Due to the LIVC effect, at a specific load level, a lighter throt-
tling operation is usually required which also reduces the pumping
loss [5–8]. The LIVC operation reduces effective compression ratio
and results in lower mixture temperature at the end of compression
stroke. The lower mixture temperature reduces the initial combus-
tion velocity and increases the 0–50% combustion duration, hence
degrades the cycle thermal efficiency [5,9]. On the other hand, the
minimum best torque (MBT) spark timing can be advanced due to
lower charge temperature, which enlarge the constant volume com-
bustion portion thus improves the thermal efficiency slightly [9].
Therefore, the LIVC operation has conflicting effects on the thermal
efficiency for the Atkinson cycle engine. Moreover, the exhaust
valve open (EVO) timing and air–fuel-ratio (AFR) also have signifi-
cant effects on the fuel economy of the engine.

The LIVC operation and other operating variables are highly
interdependent and have different effects on the fuel economy of
the Atkinson cycle engine, which will make the optimization and
calibration very time-consuming and expensive. Recently, some
model based calibration methods and tools have been developed
to conduct the optimization and calibration works for the engine
operating variables [10–15]. Guerrier and Cawsey [10] and Carter
and Gabler [11] introduced application examples of the Model
Based Calibration (MBC) toolbox in MATLAB software. The MBC
method firstly established the objective mathematic models based
on numerical method (such as the polynomial fitting) using exper-
imental or simulation data. Then the optimization works were
done based on the mathematic models. Wu B. used artificial neural
network technique to build the surrogate models of the 1-D simu-
lation software in order to optimize the cam phasing to maximize
the torque output at WOT operating conditions [12] and to im-
prove the fuel economy and reduce NOx emissions at part loads
[13]. Togun and Baysec [14] used the artificial neural networks to
model the torque and specific fuel consumption of a gasoline
engine. D’Errico et al. [15] defined an efficient methodology for
the internal combustion engine (ICE) design and optimization
based on a 1D fluid dynamic physical model. The direct search
algorithm and Genetic Algorithm (GA) were chosen and compared
to solve single- and multi-objective optimization problems.

Classical numerical optimization methods are only applicable to
continuously differentiable functions. Moreover, those methods
are easy to drop in local minima and their performances depend
on the chosen initial values. Fortunately, the GA is more suitable
for the systems that are complex, highly nonlinear and not obvious
analytical such as the engine system addressed in this paper. Fur-
thermore, the GA is less likely to get trapped in local minima, and is
not restricted by continuity or differentiability requirements on
the objective functions. Therefore, the GA was used as the optimi-
zation technique in our optimization work.

In recent years, GA has been widely used in the engine field to
perform optimization of the design and operating variables [16–
20] or to identify engine model parameters [21]. Alonso et al.
[16] used artificial neural network (ANN) to model the experimen-
tal emission data of a diesel engine, then the operating variables
were optimized based on the ANN models and GA to reduce the
emissions. Hiroyasu et al. [17] applied the multi-objective genetic
algorithm (MOGA) to optimize EGR, injection timing and other rel-
evant operating variables to improve the fuel efficiency and reduce
the emissions. Verma and Lakshminarayanan [18] used GA to opti-
mize the injection timing of a diesel engine to improve the fuel
economy while meeting the NOx emission limit, which illustrates
the adaptability of GA on complex optimization problems. Voss-
oughi and Rezazade [19] demonstrated the capability of MOGA
in the calibrations of the engine management system (EMS) based
on ANN modeling method. Lampinen [20] developed a GA based
computer aided design methodology to implement automatic de-
sign and optimization of complex problems. The cam shapes were
described by a computer program. The proposed method is more
efficient and accurate than the conventional method using experi-
ences and trial and errors. Li and Pilidis [21] investigated a GA
based gas turbine design-point performance adaptation approach
to best estimate the unknown component parameters and opti-
mize engine performance.
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However, there has not been any published investigation about
directly using engine physical model to conduct the engine calibra-
tions over the entire speed–load operating range. The method in
Refs. [10–13,16–19] must first build the numerical optimization
model using simulation or experimental data. If only using exper-
imental data that cover all speed–load points to build the mathe-
matic model for complex engine system, the experimental tasks
would be huge and the associated cost will be too large to be
acceptable. D’Errico et al. [15] carried out an ICE design and optimi-
zation based on 1-D dynamic physical models. However, they only
validated the model at full load, but used the model to do optimi-
zation works for part loads without any validation. Thus the model
accuracy should be doubted. Therefore, to realize the physical
model based automatic calibration of operating parameters, the
accurate enough 1-D engine models over the entire engine operat-
ing range including part loads are in the critical path.

A model based optimization methodology, which was realized
by coupling MATLAB GA and the part-load calibrated 1-D GT-Power
physical models of the Atkinson cycle engine, is proposed in this
paper. The 1-D simulation models were carefully calibrated by
using experimental data at several representative speed–load
points that cover the entire engine speed–load range. Basing on
the 1-D physical models, the operating variables (IVC timing, etc.)
can be further optimized by GA to improve the fuel economy. The
optimization results (control maps) for the operating variables at
each load level of each speed were computed by the proposed opti-
mization methodology. Then, these computed control maps were
applied to experimentally calibrate the engine control unit (ECU).
Those operating variables were further experimentally optimized
to obtain the maximum fuel economy at each operating point.

2. The engine model

2.1. The Atkinson cycle engine

Table 1 lists the main specifications of the Atkinson cycle en-
gine. This Atkinson cycle engine was developed based on a 1.8L
double VVT Otto cycle engine with geometrical compression ratio
(GCR) of 10.6. The GCR 12.5 of the Atkinson cycle engine was real-
ized by increasing the medium height of the piston to reduce the
combustion chamber volume [1].

The vane operating angle range for both intake and exhaust VVT
device is 40CA. The initial intake valve variable range for the Otto
cycle engine is 70–110CA after bottom dead center (ABDC). Consid-
ering the bigger GCR for the Atkinson cycle engine and the LIVC
operation, as well as the combined load control effects of the intake
VVT device and the throttling body at part load operating condi-
tions, the variable range of the intake VVT for the Atkinson cycle
engine was retarded 5CA compared to the Otto cycle engine.

2.2. GT-Power model of the Atkinson cycle engine

Fig. 1 shows the schematic of the 1D GT-Power model of the
Atkinson cycle engine. The GT-Power model of the baseline Otto
Table 1
Main engine specifications.

Total displacement (cm3) 1799
Cylinder/valve number (�) 4/16
Bore (mm) 80
Stroke (mm) 89
Length of connection rod (mm) 133.1
Geometrical compression ratio (�) 12.5
Fuel injection type (�) MPI
VVT operating range (CA) 40
IVC (CA ABDC) 75–115
EVO (CAATDC) 90–130
cycle engine at WOT operating conditions have been built and
carefully calibrated in Ref. [1]. However, this model can only be
used to simulate the WOT operating conditions. For the part load
conditions, the combustion and heat-transfer related sub-models
need to be re-built and re-calibrated using the part load experi-
mental data.

The two-zone quasi 3-D turbulent flame combustion model,
namely SITurb [22], is used to predict the apparent heat release
rate (HRR). It can take into account the effects of dilutions (e.g.,
residual gases) and the mixture temperature on the HRR. Hence,
the influences of VVT and AFR on the HRR could be simulated using
this combustion model.

The Woschni model [22,23] is adopted to simulate all heat-
transfer processes. Mathematical expressions of the basic SITurb
combustion model [22,23] and Woschni heat-transfer model [23]
are shown in the Table 2.

Eqs. (1)–(6) in Table 2 describe the original SI engine combus-
tion model derived by Keck and his coworkers [23]. Eq. (1) de-
scribes the burning rate of mixture. The first term on the right
side represents the laminar (diffusive) propagation of the flame
front, which is determined by the laminar flame speed (SL in Eq.
(6)) and mixture density. The second term represents the burning
rate of mixture already entrained within this flame front, which is
related to turbulent velocity (lT in Eq. (3)). Eq. (2) describes the
rate of change of unburned mixture mass l within the flame zone.
The first term represents the turbulent convection of unburned
mixture across the flame front, and the second term represents
the mass rate of the burning mixture that is still contained within
the flame zone. The exponential term in the brackets describes the
fact that the flame sheet initially is spherical and laminar-like: it
requires a time of about sb (characteristic burning time in Eq.
(5)) to develop into a turbulent flame.

It can be found in Eq. (1) that the burning rate of mixture is
mainly determined by unburned mixture density, laminar flame
speed, unburned mixture mass within the flame zone, turbulent
velocity and characteristic burning time. When these values are
calculated, the burning rate of mixture could be calculated by
substituting these values into Eq. (1).

The Woschni heat-transfer sub-model is mainly used to de-
scribe the steady-flow forced-convection heat-transfer problems,
in which the heat flux _q transferred to a solid surface at tempera-
ture Tw from a flowing fluid stream at temperature T is determined
from the Eq. (14).

The burning rate of mixture together with the heat-transfer loss
determines the in-cylinder pressure and the final performance of
the engine. At each speed–load point, you can obtain accurate
burning rate and heat-transfer loss by carefully adjusting the rele-
vant terms in Eqs. (1–6 and 14 and 15). For example, the burning
rate of a specific speed–load point could be adjusted by changing
the turbulent velocity in Eq. (2). In this way, accurate burning rate
and heat loss of all speed–load points could be obtained and final
engine performances could be accurately predicted.

The SI engine combustion model (Eqs. (1) and (2)) is empirically
based, and derived based on coupled analysis of flame front loca-
tion and cylinder pressure data at several sets of engine operating
conditions. Additionally, the uT in Eq. (3) is also empirical correla-
tion derived by applying Eqs. (1) and (2) to several sets of engine
combustion data [23].

Similar to the combustion model, the Woschni heat-transfer
model is also a data-derived model obtained by fitting the heat-
transfer data under a wide range of engine operating conditions.

Therefore, the SITurb and Woschni are all phenomenological
and data-derived empirical models. The two models were derived
based on the experimental data of some typical engine operating
conditions. Therefore, once the simulated operating condition
changes, the relevant model parameters in the two models must



Fig. 1. GT-Power model of the Atkinson cycle engine.

Table 2
SITurb combustion model and Woschni heat-transfer model.

Basic model Modified model

SITurb : dmb
dt ¼ quAf SL þ l

sb
(1) SITurb : dmb

dt ¼ quAf S�L þ
l
s�

b

(7)

dl
dt ¼ quAf uT ð1� e�t=sb Þ � l

sb

(2) dl
dt ¼ quAf u�T ð1� e�t=s�

b Þ � l
s�

b

(8)

uT ¼ 0:08�ui
qu
qi

� �1=2 (3)
u�T ¼ m20:08�ui

qu
qi

� �1=2 (9)

l ¼ me �mb (4) l ¼ me �mb (10)

sb ¼ lM
SL

(5) s�b ¼
l�M
S�L

(11)

SL ¼ ðBm þ B/ð/� /mÞ2Þ � Tu
Tref

h ia p
pref

h ib
ð1� 2:06R0:77DEM

f Þ (6) S�L ¼ m1SL (12)

l�M ¼ m3lM (13)

Woschni : _q ¼ AwhcðT � TwÞ (14) Woschni : _q� ¼ m4AwhcðT � TwÞ (16)

hc ¼ 3:26B�0:2p0:8T�0:55w0:8 (15) hc ¼ 3:26B�0:2p0:8T�0:55w0:8 (17)
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be accordingly modified and calibrated using the experimental
data taken at the same operating condition to correctly predict
the HRR and heat loss at this condition. Otherwise, the engine per-
formances predicted by the GT-Power model will have significant
error.

The following parameters were introduced to modify the SITurb
and Woschni sub-models in order to simulate the part load operat-
ing conditions, and they were calibrated at various speeds and
loads to cover the entire engine speed and load range: Dilution
Exponent Multiplier (the DEM in Eq. (6)), Flame Kernel Growth Mul-
tiplier, Turbulent Flame Speed Multiplier and Taylor Length Scale Mul-
tiplier in the SITurb sub-model, and Convection Multiplier in the
Woschni sub-model.

The Flame Kernel Growth Multiplier, Turbulent Flame Speed
Multiplier, Taylor Length Scale Multiplier and Convection Multi-
plier are denoted by m1, m2, m3 and m4, respectively.

DEM needs to be calibrated to consider the effect of in-cylinder
residual on the laminar flame speed in Eq. (6). Increasing this value
will reduce the effect of residual dilution on the laminar flame
speed. In the GT-Power model, this parameter was only calibrated
to vary with load, which is due to the reality that the in-cylinder
residual fraction varies significantly with load but not obviously
with engine speed.
m1: needs to be calibrated to scale the growth rate of the flame
kernel. This parameter scales the laminar flame speed in Eq. (6)
thus the characteristic burning time sb in Eq. (5). Increasing this va-
lue will advance the transition from the laminar combustion to the
turbulent combustion and shorten the ignition delay.

m2: needs to be calibrated to scale the calculated turbulent
velocity uT in Eq. (3) thus the burning rate in Eq. (2). This parameter
strongly influences the turbulent transfer of unburned mixture
into the flame zone and thus the burning rate. Increasing this value
will shorten the 10–90% combustion duration.

m3: needs to be calibrated to scale the calculated value of Taylor
micro-length scale (lM in Eq. (5)) and thus adjust the characteristic
burning time sb. Increasing this value will reduce the burning rate
of mixture and delay the entire combustion process.

m4: needs to be calibrated to scale the computed convective
heat-transfer loss by Eq. (14). Increasing this value will increase
the convective heat-transfer loss in the combustion process.

The modified SI engine combustion and heat-transfer sub-mod-
els were obtained by introducing m1, m2, m3 and m4 into the Eqs. (1)
and (2). The modified combustion and heat-transfer sub-models
have been listed in the column named ‘Modified model’ of Table 2.

For the modified model, DEM, m1, m2, m3 and m4 were all
calibrated to various engine speeds and loads covering the entire
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Fig. 3. Flowchart for calibrating the sub-model parameters.
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engine speed–load operating range. At each speed–load point,
those parameters were carefully calibrated using experimental
data to perform accurate prediction of the HRR and heat loss. As
a result, the modified combustion and heat-transfer sub-models
could ensure high enough prediction accuracy in the entire engine
operating range.

2.3. Calibration results for the GT-Power models

The Atkinson cycle engine was operated over a wide range of
speed–load conditions on an engine dynamometer test bench.
The experimental data for throttle angle, IVC timing, EVO timing,
AFR, SA and the corresponding engine output data at each
speed–load point have been acquired.

The relevant parameters in the Woschni and SITurb sub-models
were calibrated at each experimental engine speed–load point.
Moreover, in fact, those model parameters vary with the speed
and/or load. The smaller the selected intervals of the speed and tor-
que are, the more accurate the interpolation between those points
is. However, if the test interval is too small, the workload to run the
test and calibrate the model parameters becomes too large to be
acceptable. Therefore, the tradeoff between the prediction accu-
racy and workload is necessary.

The selected experimental points of the speed and torque for
calibrating the GT-Power models are shown in Fig. 2. The torque
points at each speed are determined from the WOT torque to
1.2 Nm. For example, the torque points at the speed of 1000 rpm
are 119.8, 116.7, . . ., 2.3, 1.2 Nm, while the those at 4400 rpm are
152, 148,. . ., 2.3, 1.2 Nm.

Calibration procedure for the sub-model parameters is shown in
Fig. 3. Brief descriptions of the calibration procedure are presented
here:

1. Input experimental values of the operating variables (IVC tim-
ing, etc.) at a speed–load point to start the calibration process.

2. Set a proper value of parameter DEM for the speed–load
point. Generally, as the load decreases, DEM value increases.
According to our experiences, DEM value is usually in a range
of 0.9–1.5.

3. Calibrate the parameter m3 to initially match the curves of
the simulated and experimental HRR. Especially, the start
and end of the HRR curve should be basically matched in this
Fig. 2. Experimental points covering entire speed–load range.
step. The value of m3 is usually in a range of 1.5–4.0. Then
moderately calibrate the parameters m1 and m2 to match
the HRR and cylinder pressure before 50% combustion timing
and their peak values. The values of m1 and m2 are usually in
a range of 0.5–1.8.

4. Examine if the cylinder pressure after 50% combustion tim-
ing are matched. If not, calibrate m4 to match this section
of cylinder pressure. Then, re-calibrate m1 and m2 to match
the peak pressure and entire HRR again considering that
the parameter m4 also affect the HRR before 50% combustion
timing and peak cylinder pressure.

5. After matching the HRR and cylinder pressure, the error
between the simulated and experimental BSFC should be in
the acceptable range. If not, you must go back to step 4 to
continue calibrating m4 and accordingly m1 and m2 to correct
the predicted BSFC.

6. Repeat the steps 1–5 until the parameters of all speed–load
points are calibrated.

Calibrations for the parameters of DEM, m1, m2, m3 and m4 are a
process of trials and errors. There is not general experience to
guide us to search for the optimum values of these parameters.
Carefully and repeatedly combined calibrations for these parame-
ters have to be manually done in order to accurately predict the
HRR at each speed–load point. Once these model parameters are
calibrated, they are not changed in the following GA optimization
stage of the operating variables.

Figs. 4–6 show the comparisons of HRR between the predicted
and measured results at speeds of 1000 rpm, 2800 rpm and



Fig. 4. HRR comparison for three load levels at 1000 rpm: 10 Nm, 90 Nm and WOT
(119 Nm): (a) HRR at 10 Nm@1000 rpm, (b) HRR at 90 Nm@1000 rpm, (c) HRR at
119 Nm@1000 rpm.

Fig. 5. HRR comparison for three load levels at 2800 rpm: 10 Nm, 90 Nm and WOT
(145 Nm): (a) HRR at 10 Nm@2800 rpm, (b) HRR at 90 Nm@2800 rpm, (c) HRR at
145 Nm@2800 rpm.
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4400 rpm, respectively. For each speed, the representative load
points of 10 Nm, 90 Nm and WOT torque are selected to present
the low, middle and full load conditions, respectively. The matrix
of the speed and load points shown in Figs. 4–6 could demonstrate
the entire speed and load range of interest.

Generally speaking, the simulated HRR match quite well with
the experimental results. At the low torque level of 10 Nm, the
HRR prediction errors are relatively larger for all three speeds. As
the engine speed increases, the low torque prediction error tends
to be reduced. Nevertheless, the error is still within the acceptable
range.

Table 3 shows the relative errors between the predicted and
experimental BSFC results. The maximum relative error of BSFC is
6.71%, occurred at the low load conditions. At most operating con-
ditions, the simulation error of the GT-Power model for the BSFC
are much lower than the maximum value. Therefore, this cali-
brated GT-Power model has enough prediction accuracy, hence
can be safely used to optimize the engine operating variables for
further improvement of the fuel economy.



Fig. 6. HRR comparison for three load levels at 4400 rpm: 10 Nm, 90 Nm and WOT
(152 Nm): (a) HRR at 10 Nm@4400 rpm, (b) HRR at 90 Nm@4400 rpm, (c) HRR at
152 Nm@4400 rpm.
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If the knock restriction is not considered in the GT-Power sim-
ulations, it will make the optimization of the operating variables
based on the models impractical. Thus, in order to optimize the
operating variables with the consideration of knock restriction,
the phenomenological empirical model for the knock index (KI)
is used too [22]. The KI model used in the simulation was intro-
duced in Ref. [1].

Temperature of the cylinder wall, piston crown and cylinder
head mainly impacts the heat transfer loss and knock tendency.
In the high to full load range, the knock tendency of the real engine
is strong, thus in the model the temperature changes as the load
changes. Above 70% load level, we make the temperature decrease
as the load decreases. While in the middle to low load range, con-
sidering the knock tendency is slight we make the temperature
constant in order to reduce the calibration workload. We only sim-
ply used m4 to adjust the heat transfer loss in this operating range.
3. The model based GA optimization methodology

The introduction of the ETC valve has made it possible to use
torque based engine control architecture [24–26]. The torque
based control strategy increases the flexibility that manages the
operating variables (such as the VVT timing), which make it possi-
ble to exploit the maximal potential of the actuators to improve
the fuel economy.

The torque based control architecture is adopted in the Atkin-
son cycle engine. In order to be suitable for the torque based con-
trol architecture, the lookup tables, as function of speed and
torque, for the ETC, IVC, EVO, AFR and SA need to be obtained in
the calibration process of these operating variables.

In this section, a GA based optimization methodology is pro-
posed and presented. The strategies that enhance the GA optimiza-
tion efficiency are also investigated and validated. At last, the final
optimization results of the five operating variables will be
presented.
3.1. The genetic algorithm

For more than three decades, numerous attempts in imitating
the living natural evolution process to solve the complex scientific
and engineering system optimization problems have been tried
and reported. Among them, the most popular evolutionary theory,
genetic algorithm is inspired and developed [18,27].

The GA mimics the natural evolutionary process by introducing
the principles of ‘survival of the fittest’ and genetics theory. The ge-
netic information (gene) is stored in the chromosome and contin-
uously evolves to better adapt the changing environment as the
increasing generations. An individual in a population is corre-
sponded with a chromosome. The individual in a population with
best fitness has more probability to survive and to be selected for
reproduction. In this way, the excellent gene in the individual is
saved and strengthened. Goodness of an individual in any genera-
tion of the evolution process is indicated by defining a fitness func-
tion. Generally, the individual with smallest fitness function value
is deemed the fittest member in a population [16–18,27].

There are two GA coded methods existing: binary and real
coded. The average Euler distance between feasible solutions for
the binary coded GA is less than that of the real number coded
GA [28]. This means that the real number coded GA could better
distribute the feasible solutions and find more real global optimum
solution. Furthermore, it is also argued that a real number coded
GA offers enhanced precision and more consistent results between
different replications [16]. Therefore, genes of a chromosome are
represented by real values within lower and upper bounds, and
the float-point real number based crossover and mutation opera-
tion are adopted in this work.

For the Atkinson cycle engine, there are five optimization vari-
ables: ETC, IVC, EVO, AFR, and SA. The chromosome of each individ-
ual can be represented as a vector of five real values, where each
real value represents a gene in the chromosome. The five real val-
ues are corresponded to the five operating variables, respectively.
Therefore, each individual in a population represents a combina-
tion of the operating variables under the specific speed and torque.
The fuel economy goodness corresponding to each individual is
evaluated basing on the fitness function value. The crossover and
mutation operation produce new children individuals based on



Table 3
The relative error of BSFC.

N/torque 1000 1200 1600 2000 2400 2800 3200 3600 4000 4400

152 – – – – – – – – – 3.16
148 – – – – – – – – 3.25 2.21
145 – – – – 1.38 0.45 1.08 1.43 2.76 1.79
138 – – – 2.23 2.43 1.59 2.39 1.69 2.68 2.48
132 – – 1.67 1.78 1.99 2.58 2.91 3.29 1.29 3.29
122 – 2.9 2.67 1.99 2.67 3.24 1.59 2.49 3.29 1.93
119.8 2.23 2.54 2.58 2.45 1.74 3.45 4.39 3.17 4.23 2.59
116.7 1.89 2.56 3.27 2.75 2.45 3.51 2.84 1.29 3.92 3.29
104.7 2.56 1.78 2.58 3.47 2.58 2.49 3.76 3.21 2.69 4.23
89.3 3.56 4.78 3.18 1.89 1.94 0.28 2.36 2.59 3.49 1.27
79.5 2.98 3.97 1.84 0.68 2.87 1.94 2.49 0.75 1.17 0.92
68 1.78 2.89 3.78 3.12 2.19 2.97 3.43 3.59 2.29 3.25
60.4 1.57 3.24 2.67 2.19 3.28 4.18 3.21 2.78 3.23 2.68
48.4 2.34 2.87 1.96 3.68 2.97 3.29 2.58 4.57 2.29 3.14
39.7 3.93 1.85 2.89 3.97 3.16 1.49 2.18 5.23 1.48 4.68
28.2 2.52 4.76 2.53 4.37 1.49 2.79 3.48 3.15 4.12 3.71
19.8 2.79 3.28 3.57 2.59 3.14 2.69 4.9 2.39 2.94 2.58
9.8 1.69 4.73 2.69 3.65 2.79 3.8 5.3 4.28 3.33 4.29
6.3 2.67 3.45 4.73 3.78 3.64 2.28 2.58 3.65 4.34 6.16
3.5 2.45 3.89 5.25 4.82 3.15 4.89 5.29 4.32 5.49 4.39
2.3 3.78 5.12 4.78 2.38 4.32 6.71 6.25 5.77 3.59 5.49
1.2 4.32 5.89 6.34 5.27 3.69 5.36 4.68 6.49 5.59 4.72
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the selected parent individuals in the reproduction pool. As the ge-
netic generation increases, the sequential individuals gradually
converge to the optimum individual with lowest fitness value.

After many trial and errors, it is found that the float-point coded
Heuristic Crossover algorithm is more suitable for this optimization
work. The child individual vector Z generated by this algorithm is
located on a line determined by two parent individual vectors X
and Y, as follows [29]:

Z ¼ Y þ r � ðX � YÞ ð18Þ

where X is the preferable individual vector, that is the fitness func-
tion F(X) < F(Y) for minimization problems. r is a random number ly-
ing in between 0 and 1, which is used to control the distance
between the child individual Z and the preferable individual X.
The parent vectors, X and Y, are randomly chosen individuals from
the current reproduction pool.

Mutation operation could provide additional genetic diversity
and it is thus more likely to avoid the local optimum solution.
Mutation operations are performed according to some probability
for the generated child vector by the crossover operations. The
Mutation Adaptable Feasible algorithm can ensure that the variation
for the five operating variables contained in the generated children
individuals are always lying in the expectation bound, which can
be depicted as follows [20]:

Ziþ1 ¼ r1 � Zi þ ð1� r1Þðr2 � ðu� lÞ þ lÞ ð19Þ

where i indicates the generation number, and r1, r2 are independent,
uniformly distributed random values generated from the range of
(0,1), while u and l represents the upper and lower bound vector
for the five operating variables, respectively.

3.2. The optimization scheme

Define vector x = (ETC, IVC, EVO, SA, AFR) to represent a chro-
mosome of an individual in the population, which means that each
chromosome contains five genetic genes.

Optimizations for the operating variables were performed un-
der the same speed–load points as those shown in Fig. 2. The GA
based optimization scheme for maximizing the fuel economy of a
given load point can be depicted as:

Minimize : BSFCðx;NÞ ð20Þ
Subject to : Torqueðx;NÞ ¼ Torqobj ð21Þ

IEGRðx;NÞ < 22 ð22Þ

KIðx;NÞ < 200; ð23Þ

Temðx;NÞ < 1150; ð24Þ

Temðx;NÞ > 673 ð25Þ

1 6 ETC 6 90; ð26Þ

75ABDC 6 IVC 6 115ABDC ð27Þ

90ATDC 6 EVO 6 130ATDC; ð28Þ

�50 6 SA 6 0; ð29Þ

12:5 6 AFR 6 15:5; ð30Þ

where BSFC(x, N) is the objective function of the GA optimization
project; Eq. (1) is the equality restriction condition in order to main-
tain expectation load level; IEGR(x, N), KI(x, N), and Tem(x, N) rep-
resents the percent in-cylinder combustion gas residual, knock
intensity, and exhaust temperature before the TWC, respectively.
Eqs. (22)–(25) are the nonlinear inequality restriction conditions
of the GA optimization problem; and Eqs. (26)–(30) denote the var-
iation range of the five optimization variables.

For the GA optimization problem with nonlinear restriction
conditions, we need to translate the optimization with restrictions
to the one without restrictions. Afterwards, the objective function
of corresponding non-restriction GA optimization is just the fitness
function of the initial GA optimization with nonlinear restrictions.

At present, there are many fitness function computation meth-
ods for the restriction optimization problem [28–30], including the
simple static penalty function method and some dynamic penalty
function methods, such as the Augmented Lagrange Barrier Algo-
rithm [31]. Michalewicz and Schoenauer showed that the simple
static penalty function method is more robust and efficient than
those complex dynamic penalty function methods. Therefore, it is
best practice to adopt the static penalty function method for most
optimization projects [29].
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In order to reduce the number of the penalty parameters and avoid
being skewed to any restriction, all restriction conditions are normal-
ized to make their absolute values less than one. Then all restriction
conditions are multiplied by the same penalty parameter R.

Equality restriction condition Eq. (21) is normalized as:
�hðxÞ ¼ TorqueðxÞ=Torq obj� 1 ð31Þ

Inequality restriction conditions Eqs. (22)–(25) are normalized
as:

�g1ðxÞ ¼ IEGRðxÞ=22� 1 < 0; ð32Þ

�g2ðxÞ ¼ KIðxÞ=200� 1 < 0; ð33Þ

�g3ðxÞ ¼ TemðxÞ=1150� 1 < 0 ð34Þ

�g4ðxÞ ¼ �TemðxÞ=673þ 1 < 0 ð35Þ

Therefore, the fitness function for the GA based fuel economy
optimization may be written as:

FðxÞ ¼ BSFCðxÞ þ R
X4

i¼1

maxð�giðxÞ; 0Þ þ j�hðxÞj
" #

ð36Þ

The selection of the penalty parameter R is very important for
the GA optimization performance. If the R value is too small, GA
may search the optimum solution out of the feasible area and yield
infeasible solution. Otherwise, if the R value is too large, it may
make the search of the real optimum solution rather difficult even
impossible to find the real optimum solution. After many trials, the
most appropriate R value was determined as 103.

The population size should increase as the complexity of optimi-
zation problem increases. The population size is generally selected
according to empirical formula (10/15) � n, where n is the number
of optimization variables. This optimization has five independent
variables, and thus the population size is selected as 70. The cross-
over proportion is defined as: the proportion for the new individuals
generated through the crossover algorithm in the next generation of
population except the elite individuals. In this work, the crossover
proportion is selected as 80%, while the maximum search genera-
tion number is 50 according to our practical experiences.

3.3. The model based GA optimization methodology

Fig. 7 shows the coupling scheme among the MATLAB (GA) pro-
gram, Simulink model and GT-Power model. Fig. 8 shows the flow-
chart for GA based fuel economy optimization via the coupling of
MATLAB/Simulink/GT-Power.

In order to enhance the GA efficiency for searching the global
optimum solution, the GA fitness function values are computed
in the vector formation. Therefore, after each generation of new
population is produced, the GT-Power model is called to compute
the objective function value and all restriction values for each indi-
vidual until all individuals are finished. Then the fitness function
value is calculated for the GA.

The work flow of the GA optimization under a given load point
shown in the Figs. 7 and 8 could be described as:

1. The MATLAB program executes the GA to conduct the selec-
tion, crossover and mutation operation and produce new
population;

2. the MATLAB program sets the corresponding values of the
five optimization variables contained in an individual to
the input module; then these values are transmitted to the
GT-Power model via Simulink/GT-Power interface;

3. the GT-Power software performs the computation and
returns required results (such as the torque) to the Simulink
model via Simulink/GT-Power interfaceat real time;
4. the Stateflow module calculates the current computation
cycle number of the GT-Power model based on the returned
real-time crank angle by the GT-Power model;

5. the MATLAB program watches the current computation cycle
number. When the cycle number is equal to 13, the MATLAB
program collects the current values of the torque, BSFC, etc.
and starts the calculation for the next individual;

6. repeat the steps 2–5 until all individuals in the current pop-
ulation are completely computed;

7. the MATLAB program computes the fitness function value
using the returned results and produces a new population
by implementing selection, crossover and mutation
operations;

8. repeat the steps 1–7 until the stop criterions for the GA are
met; then the optimum solution for the current optimization
problem could be found.

The GA optimizes the operating variables of each speed–load
point one by one until the optimization for all speed–load points
are finished.

3.4. Strategy for accelerating the GA optimization

The SITurb and knock sub-models are adopted to predict the
HRR and KI, respectively. The computation speed of the GT-Power
model is much slower than that uses Wiebe function combustion
model [22] without the knock model. As a result, if only one GT-
Power model is participating in the individual computation at a
time, the computation time for all individuals of each population
is quite long. In our practice, when the population size and evolu-
tion generation number for the GA is set as 70 and 50, respectively,
the optimization time for a load point at 4000 rpm is over 40 h!
More than 98% time is spent by the GT-Power model to compute
the fitness function values. Strategies for accelerating the compu-
tation are necessary.

As shown in Fig. 9, in order to accelerate the GA optimization on
a computer with four CPU cores, we use four MATLAB to control
four GT-Power models to collaboratively compute the individuals
in a population at the same time. In Fig. 9, the top MATLAB exe-
cutes GA while assigning computation tasks of individuals to the
other three MATLABs. If there are more CPU cores in a single work-
station, only need to increase the MATLAB-GT-Power group similar
to that in Fig. 9.

However, the reduction in computation time is limited if only by
adding new MATLAB-GT-Power computation groups in a single
workstation computer. Fig. 10 presents the schematic for the distri-
bution computation by linking multiple workstations via a local net-
work. For any computer in Fig. 10, all CPU cores participate in the
computation of the individuals similar to that shown in Fig. 9. The to-
tal computation time for the individuals could be greatly reduced.

On the other hand, as the evolution generation increases, the
distance between the individuals in a new population becomes
smaller and smaller. Therefore, the number of the individuals con-
taining the same five independent variables increases. If these
same individuals are all transmitted to the GT-Power model, there
would be many repeated calculations. The following strategy was
implemented: Once a population is produced, comparisons are
performed among all individuals in this new population. For the
same individuals, only one of them is preserved. Then, the pre-
served individuals are compared to those in the parent popula-
tions. If there are the same individuals, the corresponding
GT-Power results saved in the previous data file are taken out
and the relevant individuals in the new population are not com-
puted again. At last, the all left individuals in the new population
are divided into some parts and transmitted to the GT-Power mod-
el for new computations.



Fig. 7. MATLAB/Simulink/GT-Power coupling scheme.

Fig. 8. Flowchart for fuel economy optimization via MATLAB(GA)/Simulink/GT-
Power coupling.

Fig. 9. Schematic for using multi-MATLABs to control multiple GT-Power models to
compute the GA individuals.
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3.5. Optimization results of the operating variables

Five HP xw6400 workstations were linked according to the
strategies described in Section 3.4 to implement the fuel economy
optimization based on MATLAB(GA)/Simulink/GT-Power coupling.
Each xw6400 workstation has 4G memory and four CPU cores with
their frequency of 2.0 GHz. The GA optimization speed was signif-
icantly increased. For example, for a load point at 4000 rpm, the
time required for GA to run 50 generations was reduced to 5 h.
Fig. 11 presents a typical GA evolution plot at 80 Nm torque and
4000 rpm. All GA solutions under all load points are feasible when
the R value is under 103. Figs. 12–16 present the optimization re-
sults of the ETC, IVC, EVO, SA and AFR, respectively.
4. Experimental setup and method

The model based optimization results of the operating variables
are only the reference points for the real experimental calibrations.



Fig. 10. Schematic showing the distributed computation based on multiple
workstations.

Fig. 11. GA evolution plot at 80 Nm torque and 4000 rpm.

Fig. 12. Optimization results of ETC.

Fig. 13. Optimization results of IVC.

Fig. 14. Optimization results of EVO.

Fig. 15. Optimization results of SA.
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The differences between the simulated and the experimental re-
sults may exist. Therefore, the possible slight experimental adjust-
ment of the optimized operating variables in Figs. 12–16 is
necessary.

Fig. 17 presents the schematic of experimental setup. The AVL
PUMA Control system performs the engine operation, collects
and processes the engine performance data.

Each cylinder was installed a Kistler 6115AFD16 pressure trans-
ducer (0–200 bar) to capture the cylinder pressure data. The



Fig. 16. Optimization results of AFR.
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pressure data were conditioned using the Charge Amplifiers and
then acquired by a high speed data acquisition system. The DEWE-
TRON-800 combustion analyzer was used to process the pressure
data and the digital encoder signal to evaluate the combustion per-
formance and calculate the HRR.

A PT200 thermoelectric couple (�40 �C to +1000 �C) was in-
stalled upstream of the three-way catalyst convertor (TWC) to
measure the exhaust temperature.

The AVL 330 kW AC dynamometer was connected to the engine
to measure the torque. Maximum speed and measured torque
accuracy of the dynamometer is 8000 rpm and 0.001%, respec-
tively. The dynamometer was operated in speed-control mode to
maintain the desired engine speed.

The AVL 733S fuel serving system and the AVL 733C fuel tem-
perature control system provided accurate fuel mass data. The
AVL 554/553 oil and coolant conditioning system maintained the
engine oil and coolant temperature at 90 ± 1.5 �C.
Fig. 17. Schematic of e
The AVL Data Acquisition System collected all the engine data,
including the charge temperature in the inlet port and exhaust
temperature before the TWC.

The control maps of the five operating variables presented in
Figs. 12–16 were embedded into the ECU via the ETAS-INCA sys-
tem. Before the engine was cranked, all SAs in the SA map are re-
tarded 5CA in order to avoid knock occurrence considering the
possible difference between GT-Power model and real engine.

In the process of experimental calibration, at any engine load le-
vel, advanced the SA until the engine had slight knock, then re-
tarded the SA until the knock disappeared. At the moment, the
SA is determined the optimal value.

An ETAS-LA4 lambda analyzer was used to measure the k value
of the exhaust gas before the TWC.

If the exhaust temperature is below 673 K, adjust AFR toward
the stoichiometric value or retard SA until the exhaust temperature
is above 673 K. If the exhaust temperature is above 1150 K, reduce
the AFR from the stoichiometric value to enrich the mixture until
the exhaust temperature is below 1150 K.

In every previous calibration process, adjusted the ETC opening
to maintain the current torque at the target load level, and logged
the BSFC at the same time.
5. Experimental results and discussion

The model based optimization results of the IVC and EVO tim-
ings were hardly modified in the experiment process while the
SA, AFR and ETC results were slightly adjusted according to the
experimental calibration methods in the Section 4. Comparison be-
tween the simulated BSFC and the measured ones is presented here
to validate and demonstrate the prediction accuracy of the model.

Fig. 18 shows the relative errors between the simulated and
experimental BSFC results. The BSFC for the simulated are the re-
sults computed under the optimized operating variables (Figs. 12–
16) while the BSFC for the experimental are the measured values in
the experiment process described in Section 4.

It can be concluded from Fig. 18 that the modified GT-Power
model covering the entire speed–load range has sufficient
xperimental setup.



Fig. 18. Relative errors in percentage between the computed and experimental
BSFC results.

Fig. 19. Fuel economy improvement in percentage.

Fig. 20. Experimental BSFC comparison between the Otto and Atkinson cycle
engines.

Fig. 21. P–V diagram of the basic Otto and Atkinson cycle.
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prediction accuracy. The maximum error of the GT-Power model
prediction after the GA optimizations comparing to the corre-
sponding experimental results is 8.5%, occurring in the low load re-
gion. In the middle to high load region, the relative errors are
relatively smaller, where the average error is about 3% with the
maximal one as 4.5%. Therefore, it is acceptable to optimize the
part load operating variables based on the modified GT-Power
model.

Fig. 19 shows the BSFC improvement of the entire engine
speed–load range. In the figure, the improvement percentage is de-
fined as that the difference between the experimental BSFC before
the GA optimization and the one after the GA optimization divides
by the BSFC before the GA optimization. The experimental fuel con-
sumption of the Atkinson cycle engine is obviously reduced after
the GA optimization. It can be seen that the improvement levels
are quite large in the regions of low loads, and high loads at high
speeds. The maximal BSFC reduction is 7.67%, which is around
the operating point of 28 Nm torque at 1600 rpm speed.

Fig. 20 shows the BSFC contour plots for the Otto and Atkinson
cycle engines, respectively. It can be seen that the area of 250 g/
kW h for the Atkinson cycle engine is greatly larger than that for
the baseline Otto cycle engine. Moreover, the area of 240 g/kW h
and 230 g/kW h for the Atkinson cycle engine is also very large
while the corresponding area for the baseline Otto cycle engine
is none. Therefore, in the medium to high load range, the Atkinson
cycle engine has obviously higher fuel economy level comparing to
the Otto cycle engine.

When the Atkinson cycle engine is used in a hybrid vehicle,
great fuel economy improvement can be obtained if proper engine
operating strategy is adopted. The most frequently used engine
operating line in the hybrid vehicles has been plotted in Fig. 20.
This engine operating line is realized by coordinating the work
schedule of the engine and the electrical motor. In this way, the
Atkinson cycle engine and the electrical motor can always work
in their own most energy efficient region. For the engine, the idle
operating conditions can be eliminated, and at most operating time
the engine can always work in the region with relatively lower fuel
consumption. Hence, the hybrid vehicle using the Atkinson cycle
engine can achieve higher fuel economy level than the traditional
vehicle with the Otto cycle engine.
6. Conclusions

The engine simulation model under various speed–load points
covering the entire speed–load range of the Atkinson cycle engine
was first built. Required experimental data were measured on an
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engine test bench to accurately calibrate the model. The GA opti-
mization methodology based on MATLAB(GA)/GT-Power coupling
was developed for the part load fuel economy optimization. Then
the strategies that could accelerate the GA optimization were pro-
posed. Finally, the look up tables, as function of speed and torque,
of the five operating variables were computed basing on the pro-
posed methodology. Some conclusions for this work have been
achieved:

(1) The modified GT-Power sub-models have sufficient predic-
tion accuracy to simulate the part load engine performance
and it can be used to optimize the operating parameters of
the Atkinson cycle engine over the entire speed–load range.

(2) The automatic optimization scheme for the five operating
variables of the Atkinson cycle engine has been realized by
using genetic algorithm and MATLAB/GT-Power coupling,
and the GA optimization efficiency is significantly improved
due to the strategies developed in this work.

(3) The GA is effective in optimizing the engine operating vari-
ables to improve the fuel economy. After optimized by the
GA, the fuel economy of the Atkinson cycle engine is
improved up to 7.67%.

(4) Comparing to the baseline Otto cycle engine, the low fuel
consumption area for the Atkinson cycle engine is signifi-
cantly larger, which is beneficial for the fuel economy
improvement of a hybrid vehicle adopting the Atkinson
cycle engine.
Appendix A

In 1882, an English engineer called James Atkinson designed the
first Atkinson cycle engine. The engine can maintain normal com-
pression ratio to avoid the knocking while implementing larger
expansion ratio by the use of a clever mechanical linkages.

Fig. 21 shows the comparison of the P–V diagram of the Otto
and Atkinson cycle. In the figure, 1-2-3-4O is the Otto cycle process
while 1-2-3-4A-1 is the Atkinson cycle process. More heat energy
(indicated as 4O-4A-1) can be converted into effective work output
thus improving the thermal efficiency.
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